Affiliation:
1. ICGM Université Montpellier CNRS, ENSCM 34090 Montpellier France
2. Laboratoire de Réactivité et de Chimie des Solides LRCS CNRS UMR 7314 Université de Picardie Jules Verne 80039 Amiens France
3. Réseau sur le Stockage Electrochimique de l'Energie (RS2E) FR CNRS 3459 Amiens France
Abstract
AbstractSodium‐ion batteries continue to rise in the energy storage landscape, their increasing adoption being driven by factors such as cost‐effectiveness and sustainability. As a consequence, there is a growing emphasis on the development of new electrode materials. Among these, olivine phosphates emerge as a promising family of cathode materials. However, viable synthesis routes are still lacking. In this study, cathode materials of olivine NaMn1‐xFexPO4 (x=0.34 and 1) were prepared by directly sodiating Mn1‐xFexPO4 through a solid‐state process at 300 °C. X‐ray diffraction, Mössbauer spectroscopy and electrochemical measurements were employed to study their structural and electrochemical features. NaMn0.66Fe0.34PO4 exhibits two pseudo‐plateaus profile with an average potential of ~3.2 V vs. Na+/Na0 with a reversible capacity reaching 75 mAh/g at C/20 via a monophasic (de)intercalation mechanism. In parallel, the intermediate composition Na0.5Mn0.66Fe0.34PO4 could be prepared via the solid‐state reaction of NaMn0.66Fe0.34PO4 and Mn0.66Fe0.34PO4. Such a solvent‐free sodiation process not only provides a simplified preparation of NMFP, but also offers easy scalability compared to the more laborious electrochemical sodiation route, making it an interesting prospect for future industrialization. Finally, this research confirms that the olivine NMFP is indeed an attractive candidate as a cathode material for SIBs.
Funder
Agence Nationale de la Recherche