Stochastic 3D Modeling of Nanostructured NVP/C Active Material Particles for Sodium‐Ion Batteries

Author:

Neumann Matthias1ORCID,Philipp Tom2ORCID,Häringer Marcel3ORCID,Neusser Gregor2ORCID,Binder Joachim R.3,Kranz Christine2ORCID

Affiliation:

1. Institute of Stochastics Ulm University Helmholtzstraße 18 89069 Ulm Germany

2. Institute of Analytical and Bioanalytical Chemistry Ulm University Albert-Einstein-Allee 11 89081 Ulm Germany

3. Institute for Applied Materials Karlsruhe Institute of Technology Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany

Abstract

AbstractA data‐driven modeling approach is presented to quantify the influence of morphology on effective properties in nanostructured sodium vanadium phosphate / carbon composites (NVP/C), which are used as cathode material in sodium‐ion batteries. This approach is based on the combination of advanced imaging techniques, experimental nanostructure characterization and stochastic modeling of the 3D nanostructure consisting of NVP, carbon and pores. By 3D imaging and subsequent post‐processing involving image segmentation, the spatial distribution of NVP is resolved in 3D, and the spatial distribution of carbon and pores is resolved in 2D. Based on this information, a parametric stochastic model, specifically a Pluri‐Gaussian model, is calibrated to the 3D morphology of the nanostructured NVP/C particles. Model validation is performed by comparing the nanostructure of simulated NVP/C composites with image data in terms of morphological descriptors which have not been used for model calibration. Finally, the stochastic model is used for predictive simulation to quantify the effect of varying the amount of carbon while keeping the amount of NVP constant. The presented methodology opens new possibilities for a ressource‐efficient optimization of the morphology of NVP/C particles by modeling and simulation.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3