Investigation of Polyacrylonitrile‐Derived Multiple Carbon Shell Composites for Silicon‐Based Anodes in Lithium‐Ion Batteries

Author:

Dold Lukas Alexander1ORCID,Bapat Chinmay Rajeev1,Gentischer Harald1,Ortlieb Niklas2ORCID,Fischer Anna23ORCID,Birke Kai Peter4,Biro Daniel13ORCID

Affiliation:

1. Department of Electrical Energy Storage Fraunhofer Institute for Solar Energy Systems ISE Heidenhofstraße 2 79110 Freiburg Germany

2. Institute for Inorganic and Analytical Chemistry (IAAC) University of Freiburg Albertstraße 21 79104 Freiburg Germany

3. Freiburger Materialforschungszentrum (FMF) University of Freiburg Stefan-Meier-Straße 21 79104 Freiburg Germany

4. Chair for Electrical Energy Storage Systems Institute for Photovoltaics (ipv) University of Stuttgart Pfaffenwaldring 47 70569 Stuttgart Germany

Abstract

AbstractThe aim of manufacturing silicon‐carbon (Si/C) composites for lithium‐ion batteries is to embed silicon particles into a carbon matrix or shell, which results in improved electrical conductivities and cycling stability by avoiding the direct solid electrolyte interphase (SEI) formation on the silicon surfaces. In this study, we explore the production of Si/C composites containing one (single) and two (multiple) carbon shells, achieved through the carbonization of polyacrylonitrile. We thoroughly analyze the carbonization process of polyacrylonitrile and investigate the structural, physical, and electrochemical properties of the resulting Si/C composites. Our findings indicate that the increase of the carbon fraction and the second thermal treatment during the manufacturing of multiple carbon shells (MCS) have a significant impact on the conductivity of the powders, increasing it by one order of magnitude. We also discover that the MCS cover the silicon surface more effectively, as revealed through etching in a NaOH solution and subsequent elemental analysis. The MCS composite, containing 30 wt.% silicon, exhibits the best cycling performance in half‐cells at 0.5 C, with an initial capacity of 776 mAh g−1 and a capacity retention of 83.0 % after 100 cycles.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3