Building Bulk and Interface Dual Fast Li+ Conducting Pathway in Composite Solid Polymer Electrolyte Membrane for All–Solid–State Lithium–Metal Batteries

Author:

He Yuanyuan1,Tang Jiawen1,Huang Xiao1,Ao Xin2,Tian Bingbing1ORCID

Affiliation:

1. International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education Institute of Microscale Optoelectronics Shenzhen University Shenzhen 518060 China

2. Department of Materials Science and Engineering School of Physics and Materials Science Nanchang University Nanchang 330031 China

Abstract

AbstractSolid polymer electrolytes (SPEs) are considered a promising solution to the safety problems of lithium‐ion batteries (LIBs) using liquid electrolytes. However, the high crystallinity and low ionic conductivity hinder the practical application of SPEs. Herein, we design a composite solid polymer electrolyte with a dual fast Li+ conducting pathway in bulk and interface by incorporating highly Li+ conductive ceramic Li6.4Ga0.2La3Zr2O12 (LGLZO) in polyethylene oxide (PEO)/Li–bis (trifluoromethanesulfonyl) imide (LiTFSI) system. Compared to Li6.5La3Zr1.5Ta0.5O12 (LLZTO), LGLZO provides better Li+ conductivity; therefore, a fast Li+ conducting pathway will form in the bulk of LGLZO nanofillers. Besides, LGLZO nanofiller accelerates the dissociation of LiTFSI and benefits the transfer of free Li+ through the SPEs near the LGLZO surface, forming another interface fast Li+ conducting pathway in the SPEs. Benefits from the dual fast Li+ pathway design, the composite electrolyte membrane with 15 wt % LGLZO nanoparticles presents a high ionic conductivity of 8.0×10−4 S cm−1 at 60 °C. The Li−Li symmetric cells with optimized content LGLZO show good cycling stability (no short circuit even after 1000 h), and the all–solid Li/LiFePO4 batteries exhibit excellent cycling performance (remained 154 mAh g−1 after 500 cycles at 0.2 C under 60 °C).

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3