Influence of Grain Size on the Electrochemical Performance of Li7‐3xLa3Zr2AlxO12 Solid Electrolyte

Author:

Botros Miriam1ORCID,Gonzalez‐Julian Jesus23ORCID,Scherer Torsten14ORCID,Popescu Radian5ORCID,Loho Christoph67,Kilmametov Askar1,Clemens Oliver8ORCID,Hahn Horst179

Affiliation:

1. Institute of Nanotechnology Karlsruhe Institute of Technology Hermann-von-Helmholtz- Platz 1 76344 Eggenstein-Leopoldshafen Germany

2. Forschungszentrum Jülich GmbH Institute of Energy and Climate Research Materials Synthesis and Processing (IEK-1) 52425 Jülich Germany

3. Institute of Mineral Engineering Chair of Ceramics RWTH Aachen University 52074 Aachen Germany

4. Karlsruhe Nano Micro Facility (KNMFi) Karlsruhe Institute of Technology Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany

5. Laboratory for Electron Microscopy Karlsruhe Institute of Technology Engesserstr 7 76131 Karlsruhe Germany

6. SCHOTT AG Hattenbergstraße 10 55122 Mainz Germany

7. Joint Research Laboratory Nanomaterials Technische Universität Darmstadt Alarich-Weiss-Str. 2 64287 Darmstadt Germany

8. Institute for Materials Science Materials Synthesis Group University of Stuttgart Heisenbergstraße 3 70569 Stuttgart Germany

9. School of Chemical Biological and Materials Engineering The University of Oklahoma 201 Stephenson Pkwy. Norman OK 73019 USA

Abstract

AbstractContemporary Li‐ion batteries are facing substantial challenges like safety and limited energy density. The development of all‐solid‐state battery cells mitigates safety hazards and allows the use of Li‐metal anodes increasing energy density. Garnet‐type solid electrolytes can be vital to achieving an all‐solid‐state cell and an understanding of the influence of its microstructure on the electrochemical performance is crucial for material and cell design. In this work the influence of grain size on the Li‐ion conductivity of Li7‐3xLa3Zr2AlxO12 (x=0.22) is presented. The synthesis and processing procedure allows changing the ceramic grain size, while maintaining the same synthesis parameters, eliminating influences of the synthesis on grain boundary composition. Field assisted sintering technology is a powerful method to obtain dense, fine‐grained ceramics with an optimal grain size of 2–3 μm, where the conductivity is double that of the counterpart (0.7 μm). A total Li‐ion conductivity of 0.43 mS cm−1 and an activation energy of 0.36 eV were achieved. The oxide‐based all‐solid‐state battery cell combining the garnet‐type electrolyte, a Li‐metal anode and a thin‐film LiCoO2 cathode was assembled and cycled at room temperature for 90 hours. This represents a proof of concept, for the application of oxide‐based electrolytes at ambient temperatures.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3