In situ Synthesis of Gel Polymer Electrolytes for Lithium Batteries

Author:

Cheng Xiangran1,Jiang Yi1,Lu Chenhao1,Li Jiaxin1,Qu Jiahe1,Wang Bingjie1,Peng Huisheng1ORCID

Affiliation:

1. State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science and Laboratory of Advanced Materials Fudan University Shanghai 200438 China

Abstract

AbstractGel polymer electrolytes (GPEs) are considered as a promising solution to replace organic liquid electrolytes for safer lithium (Li) batteries due to their high ionic conductivity comparable to liquid electrolytes, no risk of leakage, and high flexibility. However, poor interfacial contact between electrodes and GPEs leads to high interfacial impedance and unsatisfactory electrochemical performance. The emerging in situ synthesized GPEs can fully infiltrate into porous electrodes and form intimate interfaces, improving interfacial contact and electrochemical performance. This perspective covers recent advances of in situ GPEs in design, synthesis, and applications in lithium (Li) batteries. Polyester and polyether‐based GPEs are mainly discussed followed by a brief introduction of GPEs with other polymer matrices, such as poly(ionic liquid)s, cyanoethyl polyvinyl alcohol, poly(vinyl acetal) and single‐ion conductors. Then, the recent progress in Li batteries using in situ GPEs are summarized, including Li‐ion battery, Li‐metal battery, Li‐sulfur battery, and Li‐air battery. Finally, the remaining challenges and future perspectives of in situ GPEs are discussed. We hope this perspective can offer guidance for in situ synthesis of GPEs and facilitate their applications in high‐performance Li batteries.

Funder

Science and Technology Commission of Shanghai Municipality

National Natural Science Foundation of China

Publisher

Wiley

Subject

Electrochemistry,Electrical and Electronic Engineering,Energy Engineering and Power Technology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3