Can Metal Cations Electrocatalyze Sulfur Redox Reaction and Suppress Polysulfide Shuttle?

Author:

Kumar Subramani12ORCID,Swain Gitanjali12,Krishnamoorthy Kothandam12ORCID

Affiliation:

1. Polymer Science and Engineering Division CSIR-National Chemical Laboratory Pashan Road 411008 Pune India

2. Academy of Scientific and Innovative Research Kamla Nehru Nagar 201002 Ghaziabad India

Abstract

AbstractIn lithium‐sulfur (Li−S) batteries, sulfur undergoes various changes. It switches between cyclic structure and linear structure. The charge on the sulfur varies between a neutral state and a negative charge‐bearing state. Due to these changes, the sulfur/polysulfide dissolves in the battery electrolyte. Furthermore, the kinetics of the sulfur redox reaction is sluggish. Therefore, a material that can suppress sulfur/polysulfide dissolution and electrocatalyze sulfur redox reaction is needed. We hypothesize that the polysulfide dissolution can be suppressed if the host exhibits polyvalent electrostatic attraction. Polysulfide is a negative charge‐bearing molecule; hence the host must comprise multiple positive charges. Nickel cations with other heteroatoms have been explored as a host in Li−S batteries. The heteroatoms impart additional interactions. The easier way to circumvent the effect of heteroatoms is the addition of metal salts. However, metal salts can either exhibit monovalent or divalent attraction with polysulfides. Those interactions are weak and we must have polyvalent interaction. Towards this objective, we have designed and synthesized a material that comprises multiple divalent cations that is also devoid of heteroatoms. The Li−S batteries fabricated using the metal cation immobilized graphene showed a maximum specific capacity of 1022 mAh/g at 0.1 C rate. Among the metal cations, nickel cations showed better performance than cobalt cations. Thus, we demonstrate that metal cations immobilized on Graphene can efficiently electrocatalyze the sluggish sulfur redox reaction and suppress the polysulfide dissolution.

Funder

Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio

Publisher

Wiley

Subject

Electrochemistry,Electrical and Electronic Engineering,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3