Rational Regulation of Cu−Co Thiospinel Hierarchical Microsphere to Enhance the Supercapacitive Properties

Author:

Xie Tian1,Liu Hangning1,Wang Lin1,Wang Jie12ORCID,Ma Chuanli1,Xuan Cuijuan1,Su Linghao1,Gong Liangyu1

Affiliation:

1. College of Chemistry and Pharmaceutical Sciences Qingdao Agricultural University Qingdao 266109 PR China

2. Department of Chemistry – Ångström Laboratory Uppsala University Uppsala 75121 Sweden

Abstract

AbstractMicro‐structure of the electrodes play significant role in regulating the supercapacitive properties. Herein, three‐dimensional hierarchical heterostructures (3DHHs) CuCo2S4 microspheres with regulated micro‐structure is constructed via a simple one‐step method. The 3DHHs CuCo2S4 microspheres experience two‐dimensional (2D) lamellar interpenetration structure→two‐dimensional (2D) lamellar interpenetration structure with nanoparticles embedded on the 2D lamellar→nanoparticles assembled lamellar interpenetration structure by simply tuning the reaction time. Typically, the transition state exhibits much higher specific surface area, which is conducive to electrochemical reaction by providing adequate electrochemical interfaces. As supercapacitor electrode, the 3DHHs CuCo2S4‐10 exhibits an excellent capacitance of 1060 F g−1 at 1 A g−1, and even superior capacity retention of 86.7 % at 5 A g−1 after 13000 cycles. Noteworthy, asymmetric supercapacitor assembles by 3DHHs CuCo2S4‐10 and active carbon can achieve high energy density of 56.3 Wh kg−1 at 750 W kg−1, which holds more than 150 % capacitance retention over 5000 cycles. This work provides simply micro‐structure regulation in materials synthesis, which has significant potential in renewable energy applications.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

China Postdoctoral Science Foundation

Postdoctoral Science Foundation of Jiangsu Province

Publisher

Wiley

Subject

Electrochemistry,Electrical and Electronic Engineering,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3