Identifying the Role of Electrolyte Additives for Lithium Plating on Graphite Electrode by Operando X‐ray Tomography

Author:

Klein Antoine1,Sadd Matthew1,Mozhzhukhina Nataliia1,Olsson Martina1,Broche Ludovic2,Xiong Shizhao1,Matic Aleksandar1ORCID

Affiliation:

1. Chalmers University of Technology Department of Physics 41296 Gothenburg Sweden

2. European Synchrotron Radiation Facility 38000 Grenoble France

Abstract

AbstractThe plating of lithium metal on the graphite electrode is a major degradation mechanism in lithium‐ion batteries (LIBs). It brings a significant risk of internal shortcircuit by penetration of dendritic lithium through the separator, leading to short cycle life and safety issues. Understanding how and when plating occurs is crucial for the development of mitigation strategies, e. g. tuning the electrolyte composition. Here we present an operando X‐ray tomographic microscopy (XTM) study to directly monitor the plating of lithium metal in a lithium/graphite cell. XTM enables a non‐destructive and quantitative characterization at operando conditions of lithium deposition on a graphite electrode at relevant conditions. In this work it allows us to probe the role of the electrolyte additives vinylene carbonate (VC) and lithium bis(fluorosulfonyl)imide (LiFSI) in the standard LIB electrolyte LP57 (base electrolyte without additives). The additives show overall better performances in terms of delayed onset of lithium plating which is important for the utilisation of the full capacity of graphite intercallaiton. We show that there is a transition during lithiation of the dominating mechanism, once lithium plating is initiated this rapidly becomes dominating and hinders further intercalation. For the base electrolyte a homogeneous and dense morphology of plated lithium is found, whereas a more dendritic morphology is observed in the presence of additives. During delithiation, there is a rapid stripping of some of the plated lithium followed by deintercalation. In addition, our work provides a general methodology to track the morphology of plated lithium, which is crucial for fundamental research about battery safety.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3