Limitations of Fast Charging of High Energy NMC‐based Lithium‐Ion Batteries: A Numerical Study

Author:

Jasielec Jerzy J.12ORCID,Peljo Pekka1ORCID

Affiliation:

1. Department of Mechanical and Materials Engineering Faculty of Technology University of Turku 20014 Turku Finland

2. Department of Physical Chemistry and Modelling Faculty of Materials Science and Ceramics AGH University of Science and Technology Al. Mickiewicza 30 30-059 Kraków Poland

Abstract

AbstractThe aim of this work is to answer the question: how to realize high energy and high‐power lithium‐ion batteries. Lithium‐metal and graphite anodes with nickel manganese cobalt (NMC) cathodes of varying thickness are investigated with finite element modelling. The overpotential analysis is performed to pinpoint the source of losses and the possible ways to decrease them. The electrolyte overpotential, resulting from the salt concentration gradient and leading to saturation and depletion of lithium in parts of the cell is identified as the main factor causing poor specific capacity at high discharge/charge currents. The influence of various parameters, including concentration and transference number of lithium salt in the electrolyte, NMC particle size, electrolyte conductivity and the exchange current density, on the galvanostatic response of modelled battery cells is discussed. The increase of the transference number would improve the performance as this would decrease the electrolyte salt concentration gradient. Lithium depletion effect can be also minimized by elevating the initial electrolyte salt concentration, as well as by increasing the porosity of the cathode, particularly at the cathode/separator boundary.

Publisher

Wiley

Subject

Electrochemistry,Electrical and Electronic Engineering,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3