A Novel High‐Performance Electrolyte for Extreme Fast Charging in Pilot Scale Lithium‐Ion Pouch Cells

Author:

Du Zhijia1ORCID,Yang Zhenzhen2,Tao Runming1,Shipitsyn Vadim34,Wu Xianyang12,Robertson David C.2,Livingston Kelsey M.1,Hagler Shae1,Kwon James1,Ma Lin34,Bloom Ira D.2,Ingram Brian J.2

Affiliation:

1. Electrification and Energy Infrastructure Division Oak Ridge National Laboratory 37830 Oak Ridge TN USA

2. Chemical Sciences and Engineering Division Argonne National Laboratory 9700 S Cass Ave 60439 Lemont IL USA

3. Department of Mechanical Engineering and Engineering Science The University of North Carolina at Charlotte 28223 Charlotte NC USA

4. Battery Complexity Autonomous Vehicle and Electrification (BATT CAVE) Research Center The University of North Carolina at Charlotte 28223 Charlotte NC USA

Abstract

AbstractRealizing extreme fast charging (XFC) in lithium‐ion batteries for electric vehicles is still challenging due to the insufficient lithium‐ion transport kinetics, especially in the electrolyte. Herein, a novel high‐performance electrolyte (HPE) consisting of lithium bis(fluorosulfonyl)imide (LiFSI), lithium hexafluorophosphate (LiPF6) and carbonates is proposed and tested in pilot‐scale, 2‐Ah pouch cells. Moreover, the origin of improved electrochemical performance is comprehensively studied via various characterizations, suggesting that the proposed HPE exhibits high ionic conductivity and excellent electrochemical stability at high charging rate of 6‐C. Therefore, the HPE‐based pouch cells deliver improved discharge specific capacity and excellent long‐term cyclability up to 1500 cycles under XFC conditions, which is superior to the conventional state‐of‐the‐art baseline electrolyte.

Funder

Argonne National Laboratory

Publisher

Wiley

Subject

Electrochemistry,Electrical and Electronic Engineering,Energy Engineering and Power Technology

Reference41 articles.

1. How we made the Li-ion rechargeable battery

2. D. Howell S. Boyd B. Cunningham S. Gillard L. Slezak S. Ahmed I. Bloom A. Burnham K. Hardy A. N. Jansen P. A. Nelson D. C. Robertson T. Stephens R. Vijayagopal R. B. Carlson F. Dias E. J. Dufek C. J. Michelbacher M. Mohanpurkar D. Scoffield M. Shirk T. Tanim M. Keyser C. Kreuzer O. Li A. Markel A. Meintz A. Pesaran S. Santhanagopalan K. Smith E. Wood J. Zhang 2017. DOE report. https://energy.gov/sites/prod/files/2017/10/f38/XFC Technology Gap Assessment Report_FINAL_10202017.pdf.

3. Prospects for reducing the processing cost of lithium ion batteries

4. Optimizing Areal Capacities through Understanding the Limitations of Lithium-Ion Electrodes

5. Enabling fast charging – A battery technology gap assessment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3