Affiliation:
1. School of Chemistry and Chemical Engineering Xi'an University of Science & Technology Xi'an China
2. Department of Urology the Second Affiliated Hospital of Nanchang University Nanchang China
Abstract
AbstractPolymer dielectrics with synergistically large dielectric permittivity (ε') and breakdown strength (Eb) but prohibited loss is of crucial applications in the electronic devices and power equipment. In this study, we aim to elevate the integrated dielectric performances of molybdenum (Mo)/polyvinylidene fluoride (PVDF) by constructing a semiconducting molybdenum oxide (MoO3) shell and insulating polystyrene (PS) shell on the Mo surface through high‐temperature oxidation followed by suspension polymerization. The resulting core@double‐shell Mo@MoO3@PS particles were compounded with PVDF to achieve high ε' and Eb while minimizing the loss. The results reveal that the Mo@MoO3@PS/PVDF composites indicate simultaneously ameliorative ε' and Eb along with restrained loss owing to the existence of the MoO3@PS double‐shell, which not only prominently enhances the interfacial compatibility and interactions between fillers and PVDF, but significantly inhibits the conductivity and loss through impeding the long‐distance motion of carrier charges. The dielectric capabilities could be improved by adjusting the thickness of the PS interlayer. The Havriliak‐Negami equation was used to fit the experimental results, which showed the impact of the PS shell on the polarization mechanism and how it inhibits carrier migration. The Mo@MoO3@PS/PVDF with high ε' and Eb yet exceptionally low loss exhibit potential applications in microelectronics and electrical industries.
Funder
Innovative Research Group Project of the National Natural Science Foundation of China
Natural Science Foundation of Shaanxi Province
Yulin Science and Technology Bureau
Subject
Materials Chemistry,Polymers and Plastics,Surfaces, Coatings and Films,General Chemistry
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献