Interfacial insight of core@double‐shell Mo@MoO3@PS/PVDF composites towards prominently meliorative dielectric performances

Author:

Wang Fang1,Zhou Wenying1ORCID,Chen Xiaolong1,Kong Fanrong1,Lin Shuangquan2,Yang Yating1,Cai Jiangtao1,Cai Huiwu1

Affiliation:

1. School of Chemistry and Chemical Engineering Xi'an University of Science & Technology Xi'an China

2. Department of Urology the Second Affiliated Hospital of Nanchang University Nanchang China

Abstract

AbstractPolymer dielectrics with synergistically large dielectric permittivity (ε') and breakdown strength (Eb) but prohibited loss is of crucial applications in the electronic devices and power equipment. In this study, we aim to elevate the integrated dielectric performances of molybdenum (Mo)/polyvinylidene fluoride (PVDF) by constructing a semiconducting molybdenum oxide (MoO3) shell and insulating polystyrene (PS) shell on the Mo surface through high‐temperature oxidation followed by suspension polymerization. The resulting core@double‐shell Mo@MoO3@PS particles were compounded with PVDF to achieve high ε' and Eb while minimizing the loss. The results reveal that the Mo@MoO3@PS/PVDF composites indicate simultaneously ameliorative ε' and Eb along with restrained loss owing to the existence of the MoO3@PS double‐shell, which not only prominently enhances the interfacial compatibility and interactions between fillers and PVDF, but significantly inhibits the conductivity and loss through impeding the long‐distance motion of carrier charges. The dielectric capabilities could be improved by adjusting the thickness of the PS interlayer. The Havriliak‐Negami equation was used to fit the experimental results, which showed the impact of the PS shell on the polarization mechanism and how it inhibits carrier migration. The Mo@MoO3@PS/PVDF with high ε' and Eb yet exceptionally low loss exhibit potential applications in microelectronics and electrical industries.

Funder

Innovative Research Group Project of the National Natural Science Foundation of China

Natural Science Foundation of Shaanxi Province

Yulin Science and Technology Bureau

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,Surfaces, Coatings and Films,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3