Affiliation:
1. Department of Biosystems Engineering Auburn University Auburn Alabama USA
2. Department of Crop, Soil and Environmental Sciences Auburn University Auburn Alabama USA
3. United States Department of Agriculture Agricultural Research Service National Peanut Research Laboratory Dawson Georgia USA
Abstract
AbstractAgronomic and physiological traits in peanut (Arachis hypogaea) are important to breeders for selecting high‐yielding and resilient genotypes. However, direct measurement of these traits is labor‐intensive and time‐consuming. This study assessed the feasibility of using unmanned aerial vehicles (UAV)‐based hyperspectral imaging and machine learning (ML) techniques to predict three agronomic traits (biomass, pod count, and yield) and two physiological traits (photosynthesis and stomatal conductance) in peanut under drought stress. Two different approaches were evaluated. The first approach employed eighty narrowband vegetation indices as input features for an ensemble model that included K‐nearest neighbors, support vector regression, random forest, and multi‐layer perceptron (MLP). The second approach utilized mean and standard deviation of canopy spectral reflectance per band. The resultant 400 features were used to train a deep learning (DL) model consisting of one‐dimensional convolutional layers followed by an MLP regressor. Predictions of the agronomic traits obtained using feature learning and DL (R2 = 0.45–0.73; symmetric mean absolute percentage error [sMAPE] = 24%–51%) outperformed those obtained using feature engineering and conventional ML models (R2 = 0.44–0.61, sMAPE = 27%–59%). In contrast, the ensemble model had a slightly better performance in predicting physiological traits (R2 = 0.35–0.57; sMAPE = 37%–70%) compared to the results obtained from the DL model (R2 = 0.36–0.52; sMAPE = 47%–64%). The results showed that the combination of UAV‐based hyperspectral imaging and ML techniques have the potential to assist breeders in rapid screening of genotypes for improved yield and drought tolerance in peanut.
Funder
National Institute of Food and Agriculture
Alabama Agricultural Experiment Station
Subject
Plant Science,Agronomy and Crop Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献