Phenotyping agronomic and physiological traits in peanut under mid‐season drought stress using UAV‐based hyperspectral imaging and machine learning

Author:

Bagherian Kamand1,Bidese‐Puhl Rafael1,Bao Yin1ORCID,Zhang Qiong2,Sanz‐Saez Alvaro2,Dang Phat M.3,Lamb Marshall C.3,Chen Charles2ORCID

Affiliation:

1. Department of Biosystems Engineering Auburn University Auburn Alabama USA

2. Department of Crop, Soil and Environmental Sciences Auburn University Auburn Alabama USA

3. United States Department of Agriculture Agricultural Research Service National Peanut Research Laboratory Dawson Georgia USA

Abstract

AbstractAgronomic and physiological traits in peanut (Arachis hypogaea) are important to breeders for selecting high‐yielding and resilient genotypes. However, direct measurement of these traits is labor‐intensive and time‐consuming. This study assessed the feasibility of using unmanned aerial vehicles (UAV)‐based hyperspectral imaging and machine learning (ML) techniques to predict three agronomic traits (biomass, pod count, and yield) and two physiological traits (photosynthesis and stomatal conductance) in peanut under drought stress. Two different approaches were evaluated. The first approach employed eighty narrowband vegetation indices as input features for an ensemble model that included K‐nearest neighbors, support vector regression, random forest, and multi‐layer perceptron (MLP). The second approach utilized mean and standard deviation of canopy spectral reflectance per band. The resultant 400 features were used to train a deep learning (DL) model consisting of one‐dimensional convolutional layers followed by an MLP regressor. Predictions of the agronomic traits obtained using feature learning and DL (R2 = 0.45–0.73; symmetric mean absolute percentage error [sMAPE] = 24%–51%) outperformed those obtained using feature engineering and conventional ML models (R2 = 0.44–0.61, sMAPE = 27%–59%). In contrast, the ensemble model had a slightly better performance in predicting physiological traits (R2 = 0.35–0.57; sMAPE = 37%–70%) compared to the results obtained from the DL model (R2 = 0.36–0.52; sMAPE = 47%–64%). The results showed that the combination of UAV‐based hyperspectral imaging and ML techniques have the potential to assist breeders in rapid screening of genotypes for improved yield and drought tolerance in peanut.

Funder

National Institute of Food and Agriculture

Alabama Agricultural Experiment Station

Publisher

Wiley

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3