The influence of season on glutamate and GABA levels in the healthy human brain investigated by magnetic resonance spectroscopy imaging

Author:

Spurny‐Dworak B.1ORCID,Reed M. B.1ORCID,Handschuh P.1ORCID,Vanicek T.1ORCID,Spies M.1ORCID,Bogner W.2ORCID,Lanzenberger R.1ORCID

Affiliation:

1. Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH) Medical University of Vienna Vienna Austria

2. Department of Biomedical Imaging and Image‐Guided Therapy, High Field MR Centre Medical University of Vienna Vienna Austria

Abstract

AbstractSeasonal changes in neurotransmitter systems have been demonstrated in imaging studies and are especially noticeable in diseased states such as seasonal affective disorder (SAD). These modulatory neurotransmitters, such as serotonin, are influencing glutamatergic and GABAergic neurotransmission. Furthermore, central components of the circadian pacemaker are regulated by GABA (the suprachiasmatic nucleus) or glutamate (e.g., the retinohypothalamic tract). Therefore, we explored seasonal differences in the GABAergic and glutamatergic system in 159 healthy individuals using magnetic resonance spectroscopy imaging with a GABA‐edited 3D‐MEGA‐LASER sequence at 3T. We quantified GABA+/tCr, GABA+/Glx, and Glx/tCr ratios (GABA+, GABA+ macromolecules; Glx, glutamate + glutamine; tCr, total creatine) in five different subcortical brain regions. Differences between time periods throughout the year, seasonal patterns, and stationarity were tested using ANCOVA models, curve fitting approaches, and unit root and stationarity tests, respectively. Finally, Spearman correlation analyses between neurotransmitter ratios within each brain region and cumulated daylight and global radiation were performed. No seasonal or monthly differences, seasonal patterns, nor significant correlations could be shown in any region or ratio. Unit root and stationarity tests showed stable patterns of GABA+/tCr, GABA+/Glx, and Glx/tCr levels throughout the year, except for hippocampal Glx/tCr. Our results indicate that neurotransmitter levels of glutamate and GABA in healthy individuals are stable throughout the year. Hence, despite the important correction for age and gender in the analyses of MRS derived GABA and glutamate, a correction for seasonality in future studies does not seem necessary. Future investigations in SAD and other psychiatric patients will be of high interest.

Funder

Österreichischen Akademie der Wissenschaften

Austrian Science Fund

Brain and Behavior Research Foundation

Publisher

Wiley

Subject

Neurology (clinical),Neurology,Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology,Anatomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3