Super‐Resolution Ultrasound Imaging for Monitoring the Therapeutic Efficacy of a Vascular Disrupting Agent in an Animal Model of Breast Cancer

Author:

Hoyt Kenneth12ORCID

Affiliation:

1. Department of Biomedical Engineering Texas A&M University College Station Texas USA

2. Department of Small Animal Clinical Sciences Texas A&M University College Station Texas USA

Abstract

ObjectiveEvaluate the use of super‐resolution ultrasound (SRUS) imaging for the early detection of tumor response to treatment using a vascular‐disrupting agent (VDA).MethodsA population of 28 female nude athymic mice (Charles River Laboratories) were implanted with human breast cancer cells (MDA‐MB‐231, ATCC) in the mammary fat pad and allowed to grow. Ultrasound imaging was performed using a Vevo 3100 scanner (FUJIFILM VisualSonics Inc) equipped with the MX250 linear array transducer immediately before and after receiving bolus injections of a microbubble (MB) contrast agent (Definity, Lantheus Medical Imaging) via the tail vein. Following baseline ultrasound imaging, VDA drug (combretastatin A4 phosphate, CA4P, Sigma Aldrich) or control saline was injected via the placed catheter. After 4 or 24 hours, repeat ultrasound imaging along the same tumor cross‐section occurred. Direct intratumoral pressure measurements were obtained using a calibrated sensor. All raw ultrasound data were saved for offline processing and SRUS image reconstruction using custom MATLAB software (MathWorks Inc). From a region encompassing the tumor space and the entire postprocessed ultrasound image sequence, time MB count (TMC) curves were generated in addition to traditional SRUS maps reflecting MB enumeration at each pixel location. Peak enhancement (PE) and wash‐in rate (WIR) were extracted from these TMC curves. At termination, intratumoral microvessel density (MVD) was quantified using tomato lectin labeling of patent blood vessels.ResultsSRUS images exhibited a clear difference between control and treated tumors. While there was no difference in any group parameters at baseline (0 hour, P > .09), both SRUS‐derived PE and WIR measurements in tumors treated with VDA exhibited significant decreases by 4 (P = .03 and P = .05, respectively) and 24 hours (P = .02 and P = .01, respectively), but not in control group tumors (P > .22). Similarly, SRUS derived microvascular maps were not different at baseline (P = .81), but measures of vessel density were lower in treated tumors at both 4 and 24 hours (P < .04). An inverse relationship between intratumoral pressure and both PE and WIR parameters were found in control tumors (R2 > .09, P < .03).ConclusionSRUS imaging is a new modality for assessing tumor response to treatment using a VDA.

Funder

National Institutes of Health

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3