Construction of dangling and staggered stacking aldehyde in covalent organic frameworks for 2e oxygen reduction reaction

Author:

Zheng Shuang12,Ouyang Zhaofeng3,Liu Minghao12,Bi Shuai4,Liu Guojuan12,Li Xuewen12,Xu Qing12,Zeng Gaofeng12

Affiliation:

1. CAS Key Laboratory of Low‐Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute (SARI) Chinese Academy of Sciences (CAS) Shanghai China

2. School of Chemical Engineering University of Chinese Academy of Sciences Beijing China

3. Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, and Zhangjiang Institute for Advanced Study Shanghai Jiao Tong University Shanghai China

4. Department of Chemistry City University of Hong Kong Kowloon China

Abstract

AbstractCovalent organic frameworks (COFs) have been utilized as the ideal candidates to preciously construct electrocatalysts. However, the highly ordered degree of COFs renders the catalytic centers closely stacked, which limits the utilization efficiency of catalytic sites. Herein, we have first constructed dangling and staggered‐stacking aldehyde (–CHO) from [4 + 3] COFs as catalytic centers for 2e oxygen reduction reaction (ORR). The new catalytic COFs have unreacted dangling ‐CHO out of the COFs' planes, which are more easily exposed in electrolytes than the sites in the frameworks. More importantly, these –CHO adopt staggered stacking models, and thus provide larger space for mass transport than those with eclipsed stacking models. In addition, by tuning the triratopic linkers in the COFs, the catalytic properties are well modulated. The optimized COF shows high selectivity and activity for 2e ORR, with H2O2 selectivity of 91%, and mass activity of 12.2 A g−1, respectively. The theoretical calculation further reveals the higher activity for the pyridine‐contained B18C6‐PTTA‐COF due to the promoted binding ability of the intermediate OOH* at the carbon in dangling –CHO. This work provides us with a new insight into designing electrocatalysts based on COFs.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3