High‐efficiency shape memory copolymers of polycaprolactone/thermoplastic polyurethane fabricated via in situ ring‐opening polymerization

Author:

Wu Fangjuan12ORCID,Hu Jiahuan1,Yang Shangda1,Li Guifeng1,Chen Haoxiang1,Fang Hui123ORCID

Affiliation:

1. College of Materials Science and Engineering Fujian University of Technology Fuzhou China

2. Key Laboratory of Polymer Materials and Products of Universities in Fujian Fujian University of Technology Fuzhou China

3. Fujian Provincial Key Laboratory of Advanced Materials Processing and Application Fujian University of Technology Fuzhou China

Abstract

AbstractShape memory blends of polycaprolactone/thermoplastic polyurethane (PCL/TPU) were prepared by in situ ring‐opening polymerization (ROP) of ε‐caprolactone (CL) and thermoplastic polyurethane (TPU). Fourier infrared spectrometer and 1H‐NMR were used to characterize the chemical structure of PCL/TPU copolymers. The results show that TPU has been involved in the ROP of CL, leading to the formation of copolymers with homogeneous morphologies. Besides, pure PCL and all the blends exhibit an excellent shape fixation ratio of 100%, due to their high crystallinity. When a small amount of TPU is introduced, the crystallinity of PCL decreases, and as a result, the shape recovery ratio of the copolymer is enhanced compared with pure PCL. However, with the increased loading of TPU, the content of PCL as the reversible phase decreases and the storage modulus of the PCL/TPU blend declines, so the driving force for the blends to return from the temporary shape to the initial shape becomes smaller, leading to a decrease in the shape recovery ratio. Notably, when the amount of TPU is only 5%, the shape recovery ratio of the blend could reach 83.3%, which is 26% higher than that of pure PCL, and meanwhile, the tensile strength of the blend decreases slightly. This study provides a new strategy for the design of shape‐memory materials with high shape‐memory properties.

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,General Chemistry,Materials Chemistry,Polymers and Plastics,General Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3