Investigation of rheological, physicochemical, and sensorial properties of traditional low‐fat Doogh formulated

Author:

Rahmati Fatemeh1,Mahjoorian Abbas1ORCID,Fazeli Fatemeh1,Ranjbar Sharagim2

Affiliation:

1. Department of Food Science & Technology, Ayatollah Amoli Branch Islamic Azad University Amol Iran

2. Department of Food Hygiene, Faculty of Veterinary medicine, Tabriz Medical Science Islamic Azad University Tabriz Iran

Abstract

AbstractDoogh is a fermented beverage made from yoghurt with water and salt. Similarly, drinks based on yoghurt are available in different countries with varying degrees of dilution, fat content, rheological properties, and taste. In this project, the use of mathematical calculations in describing rheological parameters from traditional low‐fat Doogh enriched with Caspian Sea (Huso huso) gelatin (0.4 w/v %), xanthan hydrocolloids (0.4 w/v %), and their mixture at a ratio of 0.2:0.2 w/v % studied. Also, serum isolation, pH, and sensory evaluation of samples were investigated. Also, the relationship between apparent viscosity and temperature of Doogh samples using the Arrhenius equation was studied. The sensory evaluation revealed that the overall acceptance scores of the samples containing gelatin, xanthan, mix, and control were 4.31, 4.33, 4.58, and 4.12, respectively. The study on serum separation value showed control sample (45.07) and mix sample (0.84) at the end of 30 days. On the first day, the pH of the Doogh samples decreased with the addition of hydrocolloids, and this trend was time dependent. pH reduction was higher in Doogh with gelatin than in other samples. Mathematical calculations showed that the low‐fat Doogh is a non‐Newtonian type and shear‐thinning (Pseudoplastic) fluid. The activation energy was calculated between 11.65 and 19.15 kJ/mol. According to the obtained results, it concluded that the use of two hydrocolloid compounds improved the physicochemical and sensory characteristics of the low‐fat Doogh samples. Also, the Ostwaldde Waele mathematical model had a high correlation with the rheological behavior of the samples.

Publisher

Wiley

Subject

Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3