Visualisation and outlier detection for probability density function ensembles

Author:

Murph Alexander C.1ORCID,Strait Justin D.1,Moran Kelly R.1,Hyman Jeffrey D.2,Stauffer Philip H.2

Affiliation:

1. Statistical Sciences (CCS‐6), Computer, Computational, and Statistical Sciences Division Los Alamos National Laboratory Los Alamos New Mexico USA

2. Energy and Natural Resources Security (EES‐16), Earth and Environmental Sciences Division Los Alamos National Laboratory Los Alamos New Mexico USA

Abstract

AbstractExploratory data analysis (EDA) for functional data—data objects where observations are entire functions—is a difficult problem that has seen significant attention in recent literature. This surge in interest is motivated by the ubiquitous nature of functional data, which are prevalent in applications across fields such as meteorology, biology, medicine and engineering. Empirical probability density functions (PDFs) can be viewed as constrained functional data objects that must integrate to one and be nonnegative. They show up in contexts such as yearly income distributions, zooplankton size structure in oceanography and in connectivity patterns in the brain, among others. While PDF data are certainly common in modern research, little attention has been given to EDA specifically for PDFs. In this paper, we extend several methods for EDA on functional data for PDFs and compare them on simulated data that exhibit different types of variation, designed to mimic that seen in real‐world applications. We then use our new methods to perform EDA on the breakthrough curves observed in gas transport simulations for underground fracture networks.

Funder

Los Alamos National Laboratory

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3