Using Explainable AI to Understand Team Formation and Team Impact

Author:

Xu Huimin1,Saar‐Tsechansky Maytal1,Song Min2,Ding Ying1

Affiliation:

1. The University of Texas at Austin USA

2. Yonsei University South Korea

Abstract

ABSTRACTThe citation of scientific papers is considered a simple and direct indicator of papers' impact. This paper predicts papers' citations through team‐related variables, team composition, and team structure. Team composition includes team size, male/female dominance, academia/industry collaboration, unique race number, and unique country number. Team structures are made up of team power level and team power hierarchy. Team members' previous citation number, H‐index, previous collaborators, career age, and previous paper numbers are a proxy of team power. We calculated the mean value and Gini coefficient to represent team power level (the collective team capability) and team power hierarchy (the vertical difference of power distribution within a team). Taking 1,675,035 CS teams in the DBLP dataset, we trained the XGBoost model to predict high/low citation. Our model has reached 0.71 in AUC and 70.45% in accuracy rate. Utilizing Explainable AI method SHAP to evaluate features' relative importance in predicting team citation categories, we found that team structure plays a more critical role than team composition in predicting team citation. High team power level, flat team power structure, diverse race background, large team, collaboration with industry, and male‐dominated teams can bring higher team citations. Our project can provide insights into how to form the best scientific teams and maximize team impact from team composition and team structure.

Publisher

Wiley

Subject

Library and Information Sciences,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3