Mechanical, Thermal and Morphological Characterization of Graphene/Al2O3‐Reinforced Epoxy Hybrid Nanocomposites

Author:

Nipu Shah Md Ashiquzzaman1,Rahman Md Zillur2ORCID,Alam Shadman Sharar1,Dev Barshan3

Affiliation:

1. Department of Industrial and Production Engineering Ahsanullah University of Science and Technology Dhaka 1208 Bangladesh

2. Department of Mechanical Engineering Ahsanullah University of Science and Technology Dhaka 1208 Bangladesh

3. Department of Textile Engineering BGMEA University of Fashion and Technology Dhaka 1230 Bangladesh

Abstract

AbstractThis work investigates the hybrid nanocomposites manufactured by direct mixing by dispersing varying weight percentages (wt.%) of graphene nanoparticles (GNPs) and Al2O3 NPs in epoxy resin. Their properties are then obtained using various mechanical (tensile, flexural, impact, and hardness) and thermal (thermogravimetric) analyses. Furthermore, their microstructure and functional groups are studied by SEM and FTIR, respectively. The hybrid nanocomposite, which contains 1.5 wt.% GNPs and 8.5 wt.% Al2O3 NPs, has excellent mechanical properties. Compared to a composite without GNPs, the tensile strength, flexural strength, impact strength, and shore D hardness improve by 95.12, 90.01, 171.43, and 19.75%, respectively. It is also found that hybrid nanocomposite exhibits enhanced thermal stability as GNPs increase, particularly at lower wt.% of Al2O3. The SEM of tensile fractured specimens of GNPs/Al2O3 epoxy hybrid nanocomposites reveals prominent failure mechanisms, including agglomeration of GNPs and debonding between the GNPs/Al2O3 and epoxy. The FTIR spectroscopy analysis reveals distinctive spectral peaks indicating successful incorporation of Al2O3 and GNPs into the epoxy‐based composite, with observed peaks corresponding to functional groups and bonds characteristic of each component. These findings suggest that the manufactured nanocomposite holds promise as a component in structural applications, particularly in automobiles, aerospace components, and sports equipment.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3