4D Printing of Polyvinyl Chloride (PVC): A Detailed Analysis of Microstructure, Programming, and Shape Memory Performance

Author:

Aberoumand Mohammad1,Soltanmohammadi Kianoosh1,Rahmatabadi Davood1,Soleyman Elyas1,Ghasemi Ismaeil2,Baniassadi Majid1,Abrinia Karen1,Bodaghi Mahdi3ORCID,Baghani Mostafa1

Affiliation:

1. School of Mechanical Engineering College of Engineering University of Tehran Tehran 1417614411 Iran

2. Faculty of Processing Iran Polymer and Petrochemical Institute Tehran 1497713115 Iran

3. Department of Engineering School of Science and Technology Nottingham Trent University Nottingham NG11 8NS UK

Abstract

AbstractIn this research, polyvinyl chloride (PVC) with excellent shape‐memory effects is 4D printed via fused deposition modeling (FDM) technology. An experimental procedure for successful 3D printing of lab‐made filament from PVC granules is introduced. Macro‐ and microstructural features of 3D printed PVC are investigated by means of wide‐angle X‐ray scattering (WAXS), differential scanning calorimetry (DSC), and dynamic mechanical thermal analysis (DMTA) techniques. A promising shape‐memory feature of PVC is hypothesized from the presence of small close imperfect thermodynamically stable crystallites as physical crosslinks, which are further reinforced by mesomorphs and possibly molecular entanglement. A detailed analysis of shape fixity and shape recovery performance of 3D printed PVC is carried out considering three programming scenarios of cold (Tg −45 °C), warm (Tg −15 °C), and hot (Tg +15 °C) and two load holding times of 0 s, and 600 s under three‐point bending and compression modes. Extensive insightful discussions are presented, and in conclusion, shape‐memory effects are promising,ranging from 83.24% to 100%. Due to the absence of similar results in the specialized literature, this paper is likely to fill a gap in the state‐of‐the‐art shape‐memory materials library for 4D printing, and provide pertinent results that are instrumental in the 3D printing of shape‐memory PVC‐based structures.

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,Organic Chemistry,General Chemical Engineering

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3