Melt Instability Identification Using Unsupervised Machine Learning Algorithms

Author:

Gansen Alex1,Hennicker Julian2,Sill Clemens3,Dheur Jean3,Hale Jack S.2,Baller Jörg1ORCID

Affiliation:

1. Department of Physics and Materials Science University of Luxembourg 162A Avenue de la Faiencerie Luxembourg L‐1511 Grand Duchy of Luxembourg

2. Department of Engineering University of Luxembourg Maison du Nombre 6, Avenue de la Fonte Esch‐sur‐Alzette L‐4364 Grand Duchy of Luxembourg

3. Goodyear Innovation Center Luxembourg Avenue Gordon Smith Colmar‐Berg L‐7750 Grand Duchy of Luxembourg

Abstract

AbstractIn industrial extrusion processes, increasing shear rates can lead to higher production rates. However, at high shear rates, extruded polymers and polymer compounds often exhibit melt instabilities ranging from stick‐slip to sharkskin to gross melt fracture. These instabilities result in challenges to meet the specifications on the extrudate shape. Starting with an existing published data set on melt instabilities in polymer extrusion, we assess the suitability of clustering, unsupervised machine learning algorithms combined with feature selection, to extract and identify hidden and important features from this data set, and their possible relationship with melt instabilities. The data set consists of both intrinsic features of the polymer as well as extrinsic features controlled and measured during an extrusion experiment. Using a range of commonly available clustering algorithms, it is demonstrated that the features related to only the intrinsic properties of the data set can be reliably divided into two clusters, and that in turn, these two clusters may be associated with either the stick‐slip or sharkskin instability. Furthermore, using a feature ranking on both the intrinsic and extrinsic features of the data set, it is shown that the intrinsic properties of molecular weight and polydispersity are the strongest indicators of clustering.

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,Organic Chemistry,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3