The Development and Evaluation of PFSA‐Free Polyacrylonitrile‐co‐Methyl Acrylate (PAN‐MA) Nanofiber Membranes for its Potential Application as a Proton Exchange Membrane in Fuel Cells

Author:

Seda Köksal Yeğin12ORCID,Öner Mualla1,Remis Tomas3,Tomas Martin4,Kovarik Tomas5

Affiliation:

1. Chemical Engineering Department Yıldız Technical University İstanbul 34210 Türkiye

2. Ion Membrane Technologies Company Istanbul 34843 Turkey

3. Chemical Processes and Biomaterials New Technologies – Research Centre University of West Bohemia University Pilsen 306 14 Czech Republic

4. Department of Mathematics Physics and Technology Faculty of Education University of West Bohemia Pilsen 301 00 Czech Republic

5. Department of Material Science and Technology Faculty of Mechanical Engineering University of West Bohemia Pilsen 301 00 Czech Republic

Abstract

AbstractThe significance of hydrogen energy has grown considerably due to climate change and the depletion of fossil fuels. PEM fuel cells are the key hydrogen technologies. Commercial membranes based on perfluorosulfonic acid (PFSA) with a polymer structure containing fluorine are currently available. However, it has been determined that certain perfluorosulfonic acids (PFSAs) are hazardous, persistent, and bioaccumulative. Advancements in hydrogen technology rely on effective, inexpensive, and perfluorocarbon‐free membranes, specifically proton exchange membranes (PEMs). In this research, a PFSA‐free polyacrylonitrile‐co‐methyl acrylate (PAN‐MA) membrane doped with phosphoric acid is prepared using the electrospinning method and then characterized by SEM, FE‐SEM, XRD, FTIR, TGA, DMA, and EIS. The DMA analysis reveals that the storage modulus of the doped membrane increases from 0.98 to 5.66 MPa at 80 °C. The nanofiber composite membrane, with a thickness of 181 µm, exhibits the highest proton conductivity of 0.306 S m−1 at 20 °C, 1.76 times higher than that of the Nafion 212 membrane. The Nafion 212 membrane has an ionic conductivity of 0.173 S m−1 under the same conditions. These results indicate that the prepared nanofiber membranes are promising materials for evaluating fuel cell applications.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3