Affiliation:
1. Institute of Applied Materials Department of Chemical Engineering University of Pretoria Private Bag X20 Hatfield 0028 South Africa
2. Naval and Industrial Technologies Research Center The University of A Coruña Ferrol Industrial Campus Ferrol 15403 Spain
Abstract
AbstractWaxes find use as processing aids in filled compounds and polyethylene‐based masterbatches. In such applications, the thermal and physical property changes they impart to the polymer matrix are important. Therefore, this study details results obtained for blends prepared by mixing a Fischer–Tropsch (F–T) wax with a high‐flow linear low‐density polyethylene (LLDPE). The melting and crystallization behavior are studied using hot‐stage polarized optical microscopy (POM) and differential scanning calorimetry (DSC). The calorimetry results are consistent with partial cocrystallization of the two components. The melting and crystallization exo‐ and endotherms for the wax‐ and LLDPE‐rich phases remained separate. However, they change in shape and shift toward higher‐ and lower temperature ranges, respectively. It is found that increasing the wax content delays the crystallization, decreases the overall crystallinity, and reduces the size of the crystallites of the polyethylene‐rich phase. Rotational viscosity is measured at 170 °C in the Newtonian shear‐rate range. The variation of the zero‐shear viscosity with blend composition is consistent with the assumption of a homogeneous melt in which the chains are in an entangled state. Therefore, it is concluded that the wax and LLDPE are, in effect, miscible in the melt and partially compatible in the solid state.
Funder
Ministerio de Ciencia e Innovación
Sasol
Subject
Materials Chemistry,Polymers and Plastics,Organic Chemistry,General Chemical Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献