Curcumin‐Encapsulated Poly(lactic‐co‐glycolic acid) Nanoparticles: A Comparison of Drug Release Kinetics from Particles Prepared via Electrospray and Nanoprecipitation

Author:

Roshan Zahra1,Haddadi‐Asl Vahid1ORCID,Ahmadi Hanie1,Moussaei Majid1

Affiliation:

1. Department of Polymer Engineering and Color Technology Amirkabir University of Technology Tehran 1591634311 Iran

Abstract

AbstractControlled drug release (CDR) is a significant field of research in medical sciences due to its numerous clinical advantages over traditional methods. Encapsulation of a drug in a polymeric matrix is common technique to achieve CDR. In this study, drug‐polymer particles are prepared using poly(lactic‐co‐glycolic acid) (PLGA) as the polymer and curcumin (CUR) as model drug. Two different methods, electrospray and nanoprecipitation, are used to prepare the particles, and optimal samples in each process are selected based on size and polydispersity index (PDI). Samples are characterized using various tests, and entrapment efficiency (EE%) and drug loading (DL%) are calculated using UV spectroscopy. The results showed that nanoprecipitated and electrosprayed PLGA particles successfully encapsulated CUR, with higher encapsulation efficiency (93.2%) and loading capacity (7.2%) for electrosprayed particles. The in vitro drug release showed that electrospray particles have a slower release rate due to higher encapsulation efficiency. The electrospray method turned out to be more viable for synthesizing these polymer‐drug particles due to smaller particle size, lower PDI, higher entrapment efficiency, and drug loading percentage. Finally, the antibacterial behavior of the particles proved that prepared particles provide excellent antibacterial efficacy (99.9%) and can be used as drug delivery systems.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3