Affiliation:
1. Department of Polymer Engineering and Color Technology Amirkabir University of Technology Tehran 1591634311 Iran
Abstract
AbstractControlled drug release (CDR) is a significant field of research in medical sciences due to its numerous clinical advantages over traditional methods. Encapsulation of a drug in a polymeric matrix is common technique to achieve CDR. In this study, drug‐polymer particles are prepared using poly(lactic‐co‐glycolic acid) (PLGA) as the polymer and curcumin (CUR) as model drug. Two different methods, electrospray and nanoprecipitation, are used to prepare the particles, and optimal samples in each process are selected based on size and polydispersity index (PDI). Samples are characterized using various tests, and entrapment efficiency (EE%) and drug loading (DL%) are calculated using UV spectroscopy. The results showed that nanoprecipitated and electrosprayed PLGA particles successfully encapsulated CUR, with higher encapsulation efficiency (93.2%) and loading capacity (7.2%) for electrosprayed particles. The in vitro drug release showed that electrospray particles have a slower release rate due to higher encapsulation efficiency. The electrospray method turned out to be more viable for synthesizing these polymer‐drug particles due to smaller particle size, lower PDI, higher entrapment efficiency, and drug loading percentage. Finally, the antibacterial behavior of the particles proved that prepared particles provide excellent antibacterial efficacy (99.9%) and can be used as drug delivery systems.