Fabrication of Zein‐Based Fibrous Scaffolds for Biomedical Applications—A Review

Author:

Rahman Mustafijur12,Dip Tanvir Mahady34,Haase Tina56,Truong Yen Bach7,Le Tu C.6,Houshyar Shadi6ORCID

Affiliation:

1. Center for Materials Innovation and Future Fashion (CMIFF), School of Fashion and Textiles RMIT University Brunswick 3056 Australia

2. Department of Dyes and Chemical Engineering Bangladesh University of Textiles Dhaka 1208 Bangladesh

3. Department of Materials University of Manchester Oxford Road Manchester M13 9PL UK

4. Department of Yarn Engineering Bangladesh University of Textiles Dhaka 1208 Bangladesh

5. School of Science RMIT University Melbourne Victoria 3001 Australia

6. School of Engineering RMIT University Melbourne Victoria 3000 Australia

7. CSIRO Manufacturing Research Way Clayton Victoria 3169 Australia

Abstract

AbstractZein, which accounts for around 80% of the total protein composition in corn, is a biocompatible and biodegradable substance derived from renewable sources. Although insoluble in water, its amphiphilic characteristics are utilized to generate nanoparticles, nanofibers, microparticles, and even films. Numerous recent studies have demonstrated the potential of zein as a prospective biomaterial to develop fibrous scaffolds for biomedical functions owing to its biocompatibility, fibrous formation, and encapsulating qualities. Fabrication of zein‐based fibrous scaffolds for biomedical applications is achieved by a wide variety of techniques, including electrospinning, wet spinning, freeze drying, and additive manufacturing. This article overviews current advancements in manufacturing techniques for zein‐based fibrous scaffolds. In addition, it summarizes the most recent biomedical applications and research activities utilizing zein‐based fibrous scaffolds. Overall, zein is proposed as a potential biomaterial for the production of fibrous scaffolds that stimulate cell adhesion and proliferation in a number of exciting biomedical applications due to its biodegradability, biocompatibility, and other unique features related to its structure.

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,Organic Chemistry,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3