Effects of Grafting Maleic Anhydride onto Poly‐ɛ‐caprolactone on Facilitative Enzymatic Hydrolysis

Author:

Thangunpai Kotchaporn1ORCID,Hu Donghao2ORCID,Kajiyama Mikio3ORCID,Neves Marcos A.3ORCID,Enomae Toshiharu3ORCID

Affiliation:

1. Graduate School of Science and Technology University of Tsukuba 1‐1‐1 Tennodai Tsukuba Ibaraki 305‐8572 Japan

2. Department of Chemistry & State Key Laboratory of Molecular Engineering of Polymers Fudan University Shanghai 200433 P. R. China

3. Faculty of Life and Environmental Sciences University of Tsukuba 1‐1‐1 Tennodai Tsukuba Ibaraki 305‐8572 Japan

Abstract

AbstractPlastic waste is a global issue because it causes overflowing landfills and pollution, leading to environmental concerns. To address this crisis, materials that can be decomposed in the natural environment are introduced to replace conventional plastics. Poly‐ɛ‐caprolactone (PCL) is a commonly used plastic that can degrade in natural environments. However, owing to its hydrophobicity, its natural decomposition rate is low. In this study, PCL is modified with maleic anhydride (MA) (PCL‐g‐MA) to increase hydrophilicity and amorphous region for faster decomposition. To assess the hydrolysis in seawater, lipase hydrolysis is performed to compare the decomposition of PCL‐g‐MA and PCL. Consequently, in a Pseudomonas lipase‐containing PBS solution, it takes 72 and 120 h for complete hydrolyze of PCL‐g‐MA and PCL, respectively. MA grafted onto PCL increases the amorphous region, where lipase can easily diffuse into PCL‐g‐MA. Morphological (FESEM and POM images), thermal (TGA and DSC), and structural (FTIR, XRD, and XPS) analyzes support the hydrolysis reaction. The mechanisms proposed in this study confirm that lipase hydrolysis starts in the amorphous regions and then transfers to the crystal regions. This hydrolysis progress is expected to facilitate the creation of eco‐friendly low‐cost PCL‐g‐MA composites with high‐rate hydrolysis, such as bio‐plastics and bio‐fibers.

Funder

University of Tsukuba

China Postdoctoral Science Foundation

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,Organic Chemistry,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3