Affiliation:
1. Universität Hamburg Institute of Physical Chemistry Grindelallee 117 20146 Hamburg Germany
2. Helmholtz‐Zentrum Hereon Institute of Membrane Research Max‐Planck‐Straße 1 21502 Geesthacht Germany
Abstract
AbstractBio‐based polymer building blocks derived from abundant biomass represent a promising class of monomers for the synthesis of sustainable high‐performance polymers. Lignin‐derived vanillin is used as a bio‐based, aromatic molecular platform for chemical modifications. The use of vanillin aldehyde derivatives as monomers with different alkyl chain length, cured with bio‐based and less‐toxic di‐ and triamines, leads to covalent adaptable Schiff base networks and thus enables sustainable and thermally reprocessable high‐performance materials without using highly toxic amines. A process is presented to prepare homogeneous films of crosslinked materials that are thermally reprocessable while maintaining their mechanical performance. The network structures, mechanical properties, and thermal stability of the obtained polymeric sheets are characterized in detail. By systematically adjusting the composition of the network building blocks, the mechanical properties could be varied from tough materials with a high elastic modulus of 1.6 GPa to materials with high flexibility and elastomeric behavior with an elongation at break of 400%. Furthermore, the stress–relaxation behavior of stoichiometric and nonstoichiometric Schiff base vitrimers is investigated. The combination of bio‐based building blocks and the degradability of Schiff base networks under acidic conditions resulted in sustainable, environmentally friendly, chemically and thermomechanically recyclable vitrimers with self‐healing and shape‐memory properties.
Funder
Deutsche Forschungsgemeinschaft
Universität Hamburg
Subject
Materials Chemistry,Polymers and Plastics,Organic Chemistry,General Chemical Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献