Piezoelectric Properties of Electrospun Polymer Nanofibers and Related Energy Harvesting Applications

Author:

Ren Kailiang1ORCID,Shen Yue2,Wang Zhong Lin1

Affiliation:

1. Beijing Key Laboratory of Micro‐Nano Energy and Sensor CAS Center for Excellence in Nanoscience Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences Beijing 100083 P. R. China

2. Center on Nanoenergy Research School of Physical Science and Technology Guangxi University 100 University East Rd Nanning Guangxi 530004 P. R. China

Abstract

AbstractElectrospinning (ES) methods that can produce piezoelectricity in polymer nanofibers have attracted tremendous research attention. These electrospun polymer nanofibers can be employed for sensors, energy harvesting, tissue engineering, and filtration applications. This paper reviews the performance of a variety of electrospun piezoelectric polymer nanofibers produced by different ES methods, including near‐field electrospinning and conventional far‐field electrospinning methods. Herein, it is described how the ES method can affect the piezoelectric properties of various polymer nanofibers, including poly(vinylidene difluorine), poly(vinylidene fluoride‐trifluoroethylene), nylon 11, poly(l‐lactic acid), and poly(α‐benzyl‐l‐glutamate). Due to the varied matrix structures of piezoelectric polymer nanofibers, the ES method may conduct variable effects on the piezoelectric properties of polymer nanofibers. After characterizations by X‐ray diffraction, Fourier transform infrared spectrum, dielectric spectra, and piezoelectric coefficient measurements, it is found that the piezoelectric properties of the polymer nanofibers can be significantly affected by the ES parameters. Most of previous review articles focus on the output performance of electrospun polymer nanofibers. A detailed description of how different ES methods affect the piezoelectricity of polymer nanofibers is still lacking. In this review paper, the basic principle behind ES methods and the way in which different ES methods affect the properties of polymer nanofibers are examined.

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,Organic Chemistry,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3