Mycelium Agrowaste‐Bound Biocomposites as Thermal and Acoustic Insulation Materials in Building Construction

Author:

Bonga Kumba Bintunia12ORCID,Bertolacci Laura1,Contardi Marco13ORCID,Paul Uttam Chandra1ORCID,Zafar Muhammad Shajih1ORCID,Mancini Giorgio1,Marini Lara1,Ceseracciu Luca4ORCID,Fragouli Despina1ORCID,Athanassiou Athanassia1ORCID

Affiliation:

1. Smart Materials Istituto Italiano di Tecnologia via Morego 30 Genova 16163 Italy

2. Dipartimento di Informatica, Bioingegneria, Robotica e Ingegneria dei Sistemi (DIBRIS) Università di Genova via Opera Pia 13 Genova 16145 Italy

3. Department of Earth and Environmental Sciences (DISAT) Piazza della Scienza Milan 20126 Italy

4. Materials Characterization Facility Istituto Italiano di Tecnologia via Morego 30 Genova 16163 Italy

Abstract

AbstractThe predominant use of synthetic materials, such as fiberglass and polymeric foams, for thermal and acoustic insulation in the construction sector contributes to the recalcitrant waste accumulation in the environment and is not economically sustainable in the long term. This is because they are developed with linear economy standards, they are neither reusable nor recyclable, and, at their end of lifecycle, they are not compostable, with a great amount of them finishing in landfills. This work is focused on the development of natural, self‐growing mycelium‐biocomposites as sustainable alternatives to these conventional synthetic materials. Specifically, fungal mycelium derived from the nonpathogenic fungal strain Pleurotus ostreatus is fed by coffee silverskin flakes, a lignocellulosic agrowaste from roasted coffee seeds, forming 3D biocomposites. The physicochemical properties of the obtained composite are thoroughly investigated, with a final focus on their thermal and acoustic insulation properties. As proved, the natural agrowaste‐mycelium composites possess high porosity and thus low density, good thermal properties, and satisfactory sound absorption capability. Such properties combined with the minimal energetic requirements for their growth and their fully compostable end‐of‐life nature make them valuable alternatives for thermal and acoustic insulation in building construction, among other applications, promoting environmental and economic sustainability.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3