Reusable and Transparent Impaction‐Based Filter with Micro Apertured Multiscale Polymeric Stencil for Particulate Matter Capture

Author:

Kim Minju1,Lee Gahyun1,Jang Segeun2,Yu Dong In3,Kim Sang Moon1ORCID

Affiliation:

1. Department of Mechanical Engineering Incheon National University Incheon 22012 Republic of Korea

2. School of Mechanical Engineering Kookmin University Seoul 02707 Republic of Korea

3. Department of Mechanical Design Engineering Pukyong National University Busan 48513 Republic of Korea

Abstract

AbstractAir pollution by particulate matter (PM) in the air including PM1.0, PM2.5, and PM10, which are categorized by particle size, is a critical global environmental issue, harming the climate, ecosystems, and human health. Especially, ultrafine dust including PM1.0 and PM2.5 poses significant human health risks. Commercial fabric‐based filters effectively trap PMs but cause high‐pressure drop and limited filter capacity and reusability. Electrospun nanofiber filters address some issues but have low mechanical strength, toxic exposure risks, long fabrication times, and restrained reusability. Herein, a reusable and transparent impaction‐based PM filter using a UV‐curable polymeric stencil with micro apertures is proposed. The polymeric stencil filters achieve high filter efficiency (68–94%), superior filter capacity, and low‐pressure drop (<64 Pa). The polymeric stencil filters can be easily cleaned with water or ethanol and remain stable under extreme temperatures (−196 to 450 °C) with slight shrinkage (0–7%). The polymeric stencil filters can be broadly utilized for not only industrial, indoor, and vehicle filters but also transparent and flexible facial health masks.

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,Organic Chemistry,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3