An Optimization Study for the Electrospun Borate Ester Nanofibers as Light‐Weight, Flexible, and Affordable Neutron Shields for Personal Protection

Author:

Özcan Mücahid12,Kaya Cengiz1,Kaya Figen1ORCID

Affiliation:

1. Department of Metallurgical and Materials Engineering Faculty of Chemistry and Metallurgy Yıldız Technical University Davutpasa Campus Istanbul 34200 Turkey

2. Mechanical Engineering Department Faculty of Engineering Adıyaman University Adıyaman 02000 Turkey

Abstract

AbstractIn this manuscript, a borate ester solution, as a precursor, is prepared by combining polyvinyl alcohol (PVA) and boric acid (BA). The precursor is then electrospun to form nanofibers. However, the addition of BA has a negative effect on the spinning behavior by changing the conductivity. The solution's quality is enhanced through use of additives such as glycerol, sodium chloride, and acetic acid. The effect of additives on the viscosity and conductivity of solutions, and their spinning behavior, is investigated. By adjusting electrospinning process variables and solution properties, nanofibers are produced. Fourier transform infrared (FT‐IR) analysis is performed to identify the formation of borate ester as a result of the reaction between PVA and BA. Thermal analysis is used to characterize the thermal stability of the fibers. Scanning electron microscopy (SEM) is used to examine the fiber morphology and diameter distribution. The findings are used to determine the best viscosity–conductivity windows for the production of electrospun borate ester nanofibers. Finally, the ability of optimized nanofibers to capture neutrons is evaluated using an Am‐Be neutron source and a BF3 detector set up. The results of the measurements indicate that the incorporation of BA into PVA nanofibers can enhance their neutron shielding capabilities up to 7.3%.

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,Organic Chemistry,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3