Affiliation:
1. Reliability Physics and Application Technology of Electronic Component Key Laboratory The 5th Electronics Research Institute of the Ministry of Information Industry Guangzhou 510610 China
2. China Electronic Product Reliability and Environmental Testing Research Institute Reliability Research and Analysis Centre Guangzhou 510610 China
3. Science and Technology on Space Physics Laboratory Beijing 100076 China
Abstract
AbstractThe development of fifth‐generation technology has resulted in increased demand for materials with low dielectric losses and superior thermal and mechanical properties. However, ensuring the widespread use of such materials by investigating their aging mechanisms and operating lifetimes remains challenging. In this study, a glass‐fiber (GF)‐reinforced acrylate‐styrene‐acrylonitrile/polycarbonate (ASA/GF/PC) composite is designed and comprehensively investigated its aging behavior, mechanism, and service lifetime under long‐term hygrothermal conditions. Based on the general Peck model, the composite maintains a high level of quality for over 10 years, including under harsh conditions of 40 °C and 80% relative humidity. The aging mechanism is primarily ascribed to cracking between the GF fibers and matrix, the breaking of chemical bonds, the generation of new cross‐linked domains, and physical aging. These findings provide valuable insights into the long‐term utilization of ASA/GF/PC composites in harsh environments.
Subject
Materials Chemistry,Polymers and Plastics,Organic Chemistry,General Chemical Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献