Recent Progress in Preparing Nonwoven Nanofibers via Needleless Electrospinning

Author:

Lee Jaeyu1,Moon Seongjun23,Lahann Joerg23,Lee Kyung Jin1

Affiliation:

1. Department of Chemical Engineering and Applied Chemistry College of Engineering, Chungnam National University 99 Daehak‐ro Yuseong‐gu Daejeon 34134 Republic of Korea

2. Department of Chemical Engineering University of Michigan Ann Arbor MI 48109 USA

3. Biointerfaces Institute University of Michigan Ann Arbor MI 48109 USA

Abstract

AbstractElectrospinning has received a lot of attention in recent years because it can create nonwoven nanofiber webs with high surface area and porosity. However, the typical needle and syringe‐based electrospinning systems feature poor productivity that has limited their usefulness in the industrial field. Here, current developments in the creation of nanofibers employing nonconventional electrospinning methods, such as needleless electrospinning and syringeless electrospinning, are examined. These alternate electrospinning techniques, which are dependent on numerous polymer droplets of varied shapes, have the potential to match the productivity required for industry‐scale manufacturing of nanofibers. Additionally, they make it possible to produce nanofibers that are difficult to spin using traditional techniques, like electrospinning of colloidal suspensions.

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,Organic Chemistry,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3