Unsupervised Learning‐Based Measurement of Ultrasonic Axial Transmission Velocity in Neonatal Bone

Author:

Li Qing1,Tran Tho N. H. T.2ORCID,Guo Jialin3,Li Boyi2,Xu Kailiang14,Le Lawrence H.5,Ta Dean124

Affiliation:

1. Department of Biomedical Engineering Fudan University Shanghai China

2. Academy for Engineering and Technology Fudan University Shanghai China

3. Department of Neonatology Shanghai First Maternity and Infant Hospital Shanghai China

4. Yiwu Research Institute Fudan University Zhejiang China

5. Department of Radiology and Diagnostic Imaging University of Alberta Edmonton Alberta Canada

Abstract

ObjectivesTo develop a robust algorithm for estimating ultrasonic axial transmission velocity from neonatal tibial bone, and to investigate the relationships between ultrasound velocity and neonatal anthropometric measurements as well as clinical biochemical markers of skeletal health.MethodsThis study presents an unsupervised learning approach for the automatic detection of first arrival time and estimation of ultrasonic velocity from axial transmission waveforms, which potentially indicates bone quality. The proposed method combines the ReliefF algorithm and fuzzy C‐means clustering. It was first validated using an in vitro dataset measured from a Sawbones phantom. It was subsequently applied on in vivo signals collected from 40 infants, comprising 21 males and 19 females. The extracted neonatal ultrasonic velocity was subjected to statistical analysis to explore correlations with the infants' anthropometric features and biochemical indicators.ResultsThe results of in vivo data analysis revealed significant correlations between the extracted ultrasonic velocity and the neonatal anthropometric measurements and biochemical markers. The velocity of first arrival signals showed good associations with body weight (ρ = 0.583, P value <.001), body length (ρ = 0.583, P value <.001), and gestational age (ρ = 0.557, P value <.001).ConclusionThese findings suggest that fuzzy C‐means clustering is highly effective in extracting ultrasonic propagating velocity in bone and reliably applicable in in vivo measurement. This work is a preliminary study that holds promise in advancing the development of a standardized ultrasonic tool for assessing neonatal bone health. Such advancements are crucial in the accurate diagnosis of bone growth disorders.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3