Implementation of a knowledge‐based decision support system for treatment plan auditing through automation

Author:

Liu Shi1,Chapman Katherine L.1,Berry Sean L.1,Bertini Julian2,Ma Rongtao1,Fu Yabo1,Yang Deshan3,Moran Jean M.1,Della‐Biancia Cesar1

Affiliation:

1. Department of Medical Physics Memorial Sloan Kettering Cancer Center New York New York USA

2. Committee on Medical Physics, Biological Science Division University of Chicago Chicago Illinois USA

3. Department of Radiation Oncology Duke Cancer Institute Durham North Carolina USA

Abstract

AbstractBackgroundIndependent auditing is a necessary component of a comprehensive quality assurance (QA) program and can also be utilized for continuous quality improvement (QI) in various radiotherapy processes. Two senior physicists at our institution have been performing a time intensive manual audit of cross‐campus treatment plans annually, with the aim of further standardizing our planning procedures, updating policies and guidelines, and providing training opportunities of all staff members.PurposeA knowledge‐based automated anomaly‐detection algorithm to provide decision support and strengthen our manual retrospective plan auditing process was developed. This standardized and improved the efficiency of the assessment of our external beam radiotherapy (EBRT) treatment planning across all eight campuses of our institution.MethodsA total of 843 external beam radiotherapy plans for 721 lung patients from January 2020 to March 2021 were automatically acquired from our clinical treatment planning and management systems. From each plan, 44 parameters were automatically extracted and pre‐processed. A knowledge‐based anomaly detection algorithm, namely, “isolation forest” (iForest), was then applied to the plan dataset. An anomaly score was determined for each plan using recursive partitioning mechanism. Top 20 plans ranked with the highest anomaly scores for each treatment technique (2D/3D/IMRT/VMAT/SBRT) including auto‐populated parameters were used to guide the manual auditing process and validated by two plan auditors.ResultsThe two auditors verified that 75.6% plans with the highest iForest anomaly scores have similar concerning qualities that may lead to actionable recommendations for our planning procedures and staff training materials. The time to audit a chart was approximately 20.8 min on average when done manually and 14.0 min when done with the iForest guidance. Approximately 6.8 min were saved per chart with the iForest method. For our typical internal audit review of 250 charts annually, the total time savings are approximately 30 hr per year.ConclusioniForest effectively detects anomalous plans and strengthens our cross‐campus manual plan auditing procedure by adding decision support and further improve standardization. Due to the use of automation, this method was efficient and will be used to establish a standard plan auditing procedure, which could occur more frequently.

Publisher

Wiley

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3