Metabolic alterations of peripheral blood immune cells and heterogeneity of neutrophil in intracranial aneurysms patients

Author:

Ya Xiaolong12ORCID,Ma Long12,Liu Chenglong12,Ge Peicong12,Xu Yiqiao3,Zheng Zhiyao14,Mou Siqi15,Wang Rong12ORCID,Zhang Qian12,Ye Xun12,Zhang Dong16,Zhang Yan12,Wang Wenjing7,Li Hao12,Zhao Jizong12

Affiliation:

1. Department of Neurosurgery Beijing Tiantan Hospital Capital Medical University Beijing China

2. China National Clinical Research Center for Neurological Diseases Beijing China

3. School of Clinical Medicine Capital Medical University Beijing China

4. Department of Neurosurgery Peking Union Medical College Hospital Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China

5. Medical School University of Chinese Academy of Sciences Beijing China

6. Department of Neurosurgery Beijing Hospital Beijing China

7. Beijing Institute of Hepatology Beijing YouAn Hospital Capital Medical University Beijing China

Abstract

AbstractBackgroundIntracranial aneurysms (IAs) represent a severe cerebrovascular disease that can potentially lead to subarachnoid haemorrhage. Previous studies have demonstrated the involvement of peripheral immune cells in the formation and progression of IAs. Nevertheless, the impact of metabolic alterations in peripheral immune cells and changes in neutrophil heterogeneity on the occurrence and progression of IAs remains uncertain.MethodsSingle‐cell Cytometry by Time‐of‐Flight (CyTOF) technology was employed to profile the single‐cell atlas of peripheral blood mononuclear cells (PBMCs) and polymorphonuclear cells (PMNs) in 72 patients with IAs. In a matched cohort, metabolic shifts in PBMC subsets of IA patients were investigated by contrasting the expression levels of key metabolic enzymes with their respective counterparts in the healthy control group. Simultaneously, compositional differences in peripheral blood PMNs subsets between the two groups were analysed to explore the impact of altered heterogeneity in neutrophils on the initiation and progression of IAs. Furthermore, integrating immune features based on CyTOF analysis and clinical characteristics, we constructed an aneurysm occurrence model and an aneurysm growth model using the random forest method in conjunction with LASSO regression.ResultsDifferent subsets exhibited distinct metabolic characteristics. Overall, PBMCs from patients elevated CD98 expression and increased proliferation. Conversely, CD36 was up‐regulated in T cells, B cells and monocytes from the controls but down‐regulated in NK and NKT cells. The comparison also revealed differences in the metabolism and function of specific subsets between the two groups. In terms of PMNs, the neutrophil landscape within patients group revealed a pronounced shift towards heightened complexity. Various neutrophil subsets from the IA group generally exhibited lower expression levels of anti‐inflammatory functional molecules (IL‐4 and IL‐10). By integrating clinical and immune features, the constructed aneurysm occurrence model could precisely identify patients with IAs with high prediction accuracy (AUC = 0.987). Furthermore, the aneurysm growth model also exhibited superiority over ELAPSS scores in predicting aneurysm growth (lower prediction errors and out‐of‐bag errors).ConclusionThese findings enhanced our understanding of peripheral immune cell participation in aneurysm formation and growth from the perspectives of immune metabolism and neutrophil heterogeneity. Moreover, the predictive model based on CyTOF features holds the potential to aid in diagnosing and monitoring the progression of human IAs.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3