Strength prediction and experimental damage investigations of plain woven CFRPs with interacting holes using multi‐instrument measurements

Author:

Khan Raja Muhammad Awais1,Shafighfard Torkan2,Ali Hafiz Qasim345ORCID,Mieloszyk Magdalena2,Yildiz Mehmet345ORCID

Affiliation:

1. Interdisciplinary Research Center for Intelligent Manufacturing and Robotics (IRC‐IMR) King Fahd University of Petroleum and Minerals Dhahran Saudi Arabia

2. Institute of Fluid Flow Machinery Polish Academy of Sciences Gdansk Poland

3. Composite Technologies Center of Excellence Sabanci University‐Kordsa Istanbul Turkey

4. Faculty of Engineering and Natural Sciences Sabanci University Istanbul Turkey

5. Integrated Manufacturing Tech. Research and Application Center Sabanci University Istanbul Turkey

Abstract

AbstractComposite structures with holes have been utilized in different applications, for example, swash plates, adaptor plates, and repair patches. These notches reduce the structural performance of the composite plates. In a woven composite plate with two interacting holes, the orientation of the holes affects the stress concentration factor (SCF) and strength of the laminate. The SCF determined by finite‐element method (FEM) shows that the structural performance of the sample with a single hole is improved through drilling one more hole along the loading direction. The main purpose of this article is to investigate, numerically and experimentally, the interaction between two holes, oriented at different angles, when the plate is subjected to tension. The location of the critical region depends on the configuration of the holes. The critical region and characteristic distances are established for each sample combining the FEM and digital image correlation (DIC) techniques. Point stress criterion (PSC) and extended‐PSC (EPSC) methods are utilized to predict the final failure strength of specimens. The failure progression under the influence of interaction between the two holes is investigated by infrared thermography (IRT). Moreover, to complement the IRT and mechanical results, fractographic analysis is conducted and it is concluded that a delamination dominated fracture along loading direction takes place in samples with two holes while a transversal matrix dominated failure is observed for the single notch specimen.

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,General Chemistry,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3