Experimental Simulation and Electromechanical Characterization of Dynamic Air Gap Eccentricity Faults in PMSG

Author:

He Yu‐Ling1ORCID,Dai De‐Rui1ORCID,Xu Ming‐Xing1,Zhang Wen1,Liu Xiang‐Ao1,Li Yong1,Xing Yun1,Zheng Wen‐Jie1,Gerada David2

Affiliation:

1. The Hebei Key Laboratory of Electric Machinery Maintenance and Failure Prevention North China Electric Power University Baoding 071003 China

2. Power Electronic, Machine and Control Research Group University of Nottingham Nottingham UK

Abstract

This paper presents a designed experimental simulation scheme for dynamic air gap eccentricity (DAGE) faults in permanent magnet synchronous generator (PMSG), along with the testing of their electromechanical characteristics. Unlike previous studies, this paper proposes and applies an experimental device setting scheme that enables accurate and convenient calibration of the DAGE fault degree, offering a novel solution for practical DAGE simulation. The experimental unit measures the electromechanical characteristics of the PMSG before and after the DAGE fault, taking into account the influence of load. The mechanical parameter considered is the stator vibration, while the electrical parameter is the circulating current parallel branches (CCPB) inside the stator winding. The characteristic frequencies of stator vibration and CCPB under the DAGE fault are analyzed based on the experimental results and verified through theoretical calculations and finite element analysis (FEA). The findings demonstrate the effectiveness of the proposed DAGE experimental device. Moreover, DAGE failure increases the strength of stator vibration and introduces new frequency components, namely fr and 2f ± fr. Under normal operation, the PMSG exhibits no CCPB. However, DAGE faults cause CCPB with frequency components of f ± fr. Moreover, the severity of the fault degree positively correlates with larger root‐mean‐square (RMS) values and characteristic frequency amplitudes of stator vibration and CCPB. Furthermore, the amplitude of stator vibration and CCPB decreases with increasing load. © 2023 Institute of Electrical Engineer of Japan and Wiley Periodicals LLC.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Electrical and Electronic Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3