Assessment of E‐glass/epoxy prepreg aging via analytical, physical and mechanical techniques

Author:

Dobhal Saiyam1,Das Supriya1,Sharma Jagriti2,Majee Swarup2,Seetharaman S.2,Rama Subba Reddy P.3,Subrahmanyam Ch.1ORCID

Affiliation:

1. Department of Chemistry Indian Institute of Technology Hyderabad India

2. Advanced System Laboratory Hyderabad India

3. Defence Metallurgical Research Laboratory Hyderabad India

Abstract

AbstractE‐glass/epoxy prepregs are undisputedly a great advancement in processing and fabrication technology. They offer immense advantages over conventional composite manufacturing processes in terms of waste reduction and efficient manufacturing times. These prepregs are used in several industries including but not limited to automobile, construction, defense and aerospace. Their versatility and wide applicability however is shadowed by intricate storage and handling requirements. Prepregs usually need to be stored at below freezing temperatures and hence lose their chemical integrity during transportation if not handled properly leading to a lot of wastage and scrap generation. Therefore, it is essential to develop a rigorous regime in order to determine the shelf‐life and usability of these prepregs. Hereby, we report an extensive experimental design for assessing shelf‐life of commercially available prepregs using techniques like DSC and IR and corelating the findings with mechanical data. The degree of pre‐cure increased to 30% as a result of exposure to moisture over prolonged time and a substantial decrease in mechanical strength was observed. The shelf‐life was found to be about 7 weeks and a strong agreement between analytical and mechanical data was observed.Highlights Analysis of prepreg aging under ambient and accelerated storage conditions. Measurement of prepreg auto‐cure advancement using IR, Raman and DSC techniques. Comprehensive assessment of effect of moisture and temperature on prepreg integrity and tackiness. Co‐relation of spectroscopic and calorimetric data with mechanical properties of laminates prepared from aged prepregs Estimation of prepreg shelf‐life on exposure to room temperature simulating conditions.

Funder

Defence Research and Development Organisation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3