A deep learning method for automatic SMS spam classification: Performance of learning algorithms on indigenous dataset

Author:

Abayomi‐Alli Olusola1ORCID,Misra Sanjay2ORCID,Abayomi‐Alli Adebayo3ORCID

Affiliation:

1. Department of Software Engineering Kaunas University of Technology Kaunas Lithuania

2. Department of Computer Science and Communication Østfold University College Halden Norway

3. Department of Computer Science Federal University of Agriculture Abeokuta Nigeria

Publisher

Wiley

Subject

Computational Theory and Mathematics,Computer Networks and Communications,Computer Science Applications,Theoretical Computer Science,Software

Reference61 articles.

1. Smartphones and Cognition: A Review of Research Exploring the Links between Mobile Technology Habits and Cognitive Functioning

2. Al‐HasanAA El‐AlfyESM.Dendritic cell‐ algorithm for mobile phone pam filtering. Proceedings International Conferences on Ambient Systems Networks and Technologies (ANT); 2015:244‐251; Elsevier B.V.

3. TruSMS: A trustworthy SMS spam control system based on trust management

4. Cloudmark.SMS spam overview; 2013. Accessed 13 February 2014.https://www.cloudmark.com/en/s/¨./whitepapers/sms‐spam‐overview

5. BothaJ VantWC LeenenL.A comparison of chat applications in terms of security and privacy. Proceedings of the 18th European Conference on Cyber Warfare and Security; July 2019:55.

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Improving fake job description detection using deep learning-based NLP techniques;Journal of Information and Telecommunication;2024-08-07

2. Explainable AI-based Framework for Efficient Detection of Spam from Text using an Enhanced Ensemble Technique;Engineering, Technology & Applied Science Research;2024-08-02

3. Detection of Korean Phishing Messages Using Biased Discriminant Analysis under Extreme Class Imbalance Problem;Information;2024-05-07

4. Machine Learning Based Classification for Spam Detection;Sakarya University Journal of Science;2024-04-30

5. XAI-based Feature Selection for SMS Spam Classification in Dravidian Languages;2024 5th International Conference on Innovative Trends in Information Technology (ICITIIT);2024-03-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3