Macroinvertebrate diversity and ecosystem functioning across the eutrophication gradients of the middle and lower reaches of Yangtze River lakes (China)

Author:

Cai Yongjiu12ORCID,Dong Rui12,Kattel Giri345,Zhang You1,Peng Kai1,Gong Zhijun12

Affiliation:

1. Key Laboratory of Watershed Geographic Sciences Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences Nanjing China

2. University of Chinese Academy of Sciences Beijing China

3. School of Geographical Sciences Nanjing University of Information Science and Technology Nanjing China

4. Department of Infrastructure Engineering The University of Melbourne Melbourne Victoria Australia

5. Department of Hydraulic Engineering Tshinghua University Beijing China

Abstract

AbstractBiodiversity, which strengthens ecosystem stability, ecosystem function, and ecosystem services, is threatened by anthropogenic perturbation and climate change worldwide. However, despite the study of the role of biodiversity in multiple facets of freshwater ecosystems, the linkages between macroinvertebrates diversity and ecosystem functioning have not yet been well‐assessed in eutrophication gradients of lowland river‐floodplain systems. In this study, we have examined the relationship between macroinvertebrates diversity (species diversity, functional diversity, phylogenetic diversity) and macroinvertebrates biomass across the three typically featured eutrophication gradients: “MACROPHYTE,” “TRANSITION,” and “PHYTOPLANKTON,” of floodplain lakes in the middle and lower reaches of the Yangtze River (China). Our results suggest that macroinvertebrates diversity in three different lacustrine conditions, biomass, and the relationship between diversity and biomass varied along eutrophication gradients. Functional richness and variance (divergence in taxon community) were the two important macroinvertebrate diversity indices, which accounted for the largest amount of variation in the biomass (63% in PHYTOPLANKTON lakes and 57% in MACROPHYTE lakes, respectively). We also found that the macrophyte coverage is more important than the relative abundance in maintaining the macroinvertebrates diversity and biomass in lowland Yangtze floodplain lake systems, while the relative abundance of macrophyte would change the BEF relationship. Our results demonstrate the functional performance of Yangtze River lakes, which would change with increased nutrient loading and decreased macrophyte coverage and would highlight the significance of the restoration of macrophytes to reduce nutrient loads.

Funder

National Natural Science Foundation of China

Youth Innovation Promotion Association of the Chinese Academy of Sciences

Publisher

Wiley

Subject

Nature and Landscape Conservation,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3