Decentralized linear–quadratic–Gaussian control of networked control systems with asymmetric information

Author:

Wang Na1ORCID,Liang Xiao2ORCID,Wang Haixia1,Zhang Qiyan1ORCID,Lu Xiao3

Affiliation:

1. College of Electrical Engineering and Automation Shandong University of Science and Technology Shandong China

2. School of Automation and Electrical Engineering Linyi University Shandong China

3. College of Energy Storage Technology Shandong University of Science and Technology Shandong China

Abstract

AbstractThe decentralized linear–quadratic–Gaussian (LQG) control problem for networked control systems (NCSs) with asymmetric information is investigated, where controller 1 shares its historical information with controller 2, and not vice versa. The asymmetry of the information structure leads to the coupling between controller 2 and estimator 1, and hence the classical separation principle fails. Through the assumption of linear control strategy, the coupling between controller 2 and estimator 1 (CCE) is decoupled, but the estimation gain is still coupled with the control gain. It is noted that the control gain conforms to the backward Riccati equation while estimation gain abides by the forward equation, which is computationally challenging. Applying the stochastic maximum principle, the solvability of the decentralized LQG control problem is reduced to that of corresponding forward and backward stochastic difference equations (FBSDEs). Further, necessary and sufficient conditions for the solvability of optimal control problem are presented by two Riccati equations, one of which is nonsymmetric. Moreover, a novel iterative forward method is proposed to calculate the coupled backward control gain and forward estimation gain.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Publisher

Wiley

Subject

Control and Systems Engineering,Electrical and Electronic Engineering,Mathematics (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3