FeS2 nanosheets–luminol–O2 chemiluminescence method for determination of venlafaxine hydrochloride, imipramine hydrochloride, and cefazolin sodium

Author:

Iranifam Mortaza1ORCID,Royan Maryam1,Golshani Pariya1,Hassanpour‐Khaneghah Mahdiyeh12,Al Lawati Haider A. J.3ORCID

Affiliation:

1. Department of Chemistry, Faculty of Basic Sciences University of Maragheh Maragheh Iran

2. Department of Analytical Chemistry, Faculty of Chemistry University of Tabriz Tabriz Iran

3. Department of Chemistry, College of Science Sultan Qaboos University Muscat Oman

Abstract

AbstractThis study introduces a novel chemiluminescence (CL) approach utilizing FeS2 nanosheets (NSs) catalyzed luminol–O2 CL reaction for the measurement of three pharmaceuticals, namely venlafaxine hydrochloride (VFX), imipramine hydrochloride (IPM), and cefazolin sodium (CEF). The CL method involved the phenomenon of quenching induced by the pharmaceuticals in the CL reaction. To achieve the most quenching efficacy of the pharmaceuticals in the CL reaction, the concentrations of reactants comprising luminol, NaOH, and FeS2 NSs were optimized accordingly. The calibration curves demonstrated exceptional linearity within the concentration range spanning from 4.00 × 10−7 to 1.00 × 10−3 mol L−1, 1.00 × 10−7 to 1.00 × 10−4 mol L−1, and 4.00 × 10−6 to 2.00 × 10−4 mol L−1 with detection limits (3σ) of 3.54 × 10−7, 1.08 × 10−8, and 2.63 × 10−6 mol L−1 for VFX, IPM, and CEF, respectively. This study synthesized FeS2 NSs using a facile hydrothermal approach, and then the synthesized FeS2 NSs were subjected to a comprehensive characterization using a range of spectroscopic methods. The proposed CL method was effective in measuring the aforementioned pharmaceuticals in pharmaceutical formulations as well as different water samples. The mechanism of the CL system has been elucidated.

Funder

University of Maragheh

Sultan Qaboos University

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3