Impacts of vegetation dynamics on hydrological simulations under drought conditions in a humid river basin in Southern China

Author:

Liu Cancan12,Chen Yongqin David13

Affiliation:

1. Department of Geography and Resource Management The Chinese University of Hong Kong Hong Kong China

2. School of Environmental Science and Engineering Southern University of Science and Technology Shenzhen China

3. School of Humanities and Social Science The Chinese University of Hong Kong Shenzhen China

Abstract

AbstractVegetation plays an essential role in the atmospheric and hydrological processes, and vegetation responds differently to climate change in various regions, especially in extreme climates. Therefore, the use of static prescribed vegetation information from past years in numerical models can be a source of biases in hydrological simulations. However, previous studies have mainly focused on the effects of vegetation dynamics on hydrological processes in arid and semi‐arid regions. It remains unclear how static or dynamic vegetation affects hydrological simulations in humid regions, especially under drought conditions. In this study, the Weather Research and Forecasting (WRF) model coupled with Noah‐MP was used to assess the impact of vegetation dynamics on hydrological simulations in the East River basin (ERb) of China, which is a major water source for several major cities in the Pearl River Delta. The model was run with prescribed and dynamic vegetation conditions, respectively. Our model validation based on observed 2‐m temperature (T2) and Leaf Area Index (LAI) showed that the model performance was improved when vegetation dynamics were considered. Our simulations with static or dynamic vegetation showed the impacts of vegetation dynamics on hydrological simulations under droughts. The model with vegetation dynamics simulated a wetter condition with higher soil moisture and runoff and lower T2, compared with the simulations of static vegetation. The results suggested that ignoring vegetation dynamics may overestimate the severity of drought in this humid basin, unlike arid and semi‐arid regions. Therefore, consideration of vegetation dynamics in this humid basin will deepen our research on different types of zones and serve as a reference for other humid regions.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3