Evaluating signaling bias for synthetic cannabinoid receptor agonists at the cannabinoid CB2 receptor

Author:

Patel Monica1ORCID,Grimsey Natasha L.2ORCID,Banister Samuel D.34ORCID,Finlay David B.1ORCID,Glass Michelle1ORCID

Affiliation:

1. Department of Pharmacology and Toxicology University of Otago Dunedin New Zealand

2. Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences University of Auckland Auckland New Zealand

3. Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre University of Sydney New South Wales Australia

4. School of Chemistry, Faculty of Science University of Sydney New South Wales Australia

Abstract

AbstractThe rapid structural evolution and emergence of novel synthetic cannabinoid receptor agonists (SCRAs) in the recreational market remains a key public health concern. Despite representing one of the largest classes of new psychoactive substances, pharmacological data on new SCRAs is limited, particularly at the cannabinoid CB2 receptor (CB2). Hence, the current study aimed to characterize the molecular pharmacology of a structurally diverse panel of SCRAs at CB2, including 4‐cyano MPP‐BUT7AICA, 4F‐MDMB‐BUTINACA, AMB‐FUBINACA, JWH‐018, MDMB‐4en‐PINACA, and XLR‐11. The activity of SCRAs was assessed in a battery of in vitro assays in CB2‐expressing HEK 293 cells: G protein activation (Gαi3 and GαoB), phosphorylation of ERK1/2, and β‐arrestin 1/2 translocation. The activity profiles of the ligands were further evaluated using the operational analysis to identify ligand bias. All SCRAs activated the CB2 signaling pathways in a concentration‐dependent manner, although with varying potencies and efficacies. Despite the detection of numerous instances of statistically significant bias, compound activities generally appeared only subtly distinct in comparison with the reference ligand, CP55940. In contrast, the phytocannabinoid THC exhibited an activity profile distinct from the SCRAs; most notably in the translocation of β‐arrestins. These findings demonstrate that CB2 is able to accommodate a structurally diverse array of SCRAs to generate canonical agonist activity. Further research is required to elucidate whether the activation of CB2 contributes to the toxicity of these compounds.

Funder

Health Research Council of New Zealand

Publisher

Wiley

Subject

General Pharmacology, Toxicology and Pharmaceutics,Neurology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3