Genes ingenuity pathway analysis unveils smoothelin‐like 1 (SMTNL1) as a key regulatory protein involved in sodium pentobarbital‐induced growth inhibition in breast cancer

Author:

Li Bingwei12ORCID,Zhang Xiaoyan12,Liu Xueting12,Li Ailing12ORCID,Han Jianqun12ORCID

Affiliation:

1. Institute of Microcirculation Chinese Academy of Medical Sciences & Peking Union Medical College Beijing China

2. International Center of Microvascular Medicine Chinese Academy of Medical Sciences Beijing China

Abstract

AbstractWe previously reported that sodium pentobarbital inhibited the growth of the breast cancer associated with the normalization of microcirculatory hemodynamics and oxygenation. Here, we aimed to screen the key regulatory proteins involved in pentobarbital‐induced normalization of microcirculatory hemodynamics in the breast cancer tissues. A nude mice model of xenograft was established using triple negative breast cancer cell line MDA‐MB‐231. After tumor cell implantation, the mice were subcutaneously injected with 50 mg/kg/day of sodium pentobarbital or an equal volume of solvent adjacent to the tumor for 14 days. Liquid chromatography linked to tandem mass spectrometry (LC–MS/MS) was used to analyze the difference in protein expression profile between the two groups. Ingenuity pathway analysis (IPA) was used to perform the canonical pathway analysis, upstream regulators analysis, and protein–protein interaction networks analysis. Screened proteins were confirmed by real‐time quantitative polymerase chain reaction (RT–qPCR) and Western blot analysis. A total of 101 differentially expressed proteins were revealed between groups. Canonical pathway analysis suggested that acute phase response signaling (z = 1, p = .00208), dilated cardiomyopathy signaling pathway (z = −2, p = .00671), and ILK signaling (z = 1, p = .0172) were key pathways with highlight associations. The mRNA and protein expressions of SMTNL1 were found significantly decreased in pentobarbital‐treated tumor tissues compared with those in controls (both p < .01). Nine important protein–protein interaction networks were identified, and of which, two contained multiple downstream regulatory proteins of SMTNL1. In conclusion, SMTNL1 is revealed as a key protein involved in pentobarbital‐induced growth inhibition signaling in breast cancer. SMTNL1 may become a new potential target for tumor microcirculation research.

Publisher

Wiley

Subject

General Pharmacology, Toxicology and Pharmaceutics,Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3