Analytical analysis of cylindrical cavity expansion considering particle breakage effect of sand and its application for cone penetration tests

Author:

Wang Changhong1,Tang Daofei1,Wang Kun1,Hu Baolin1

Affiliation:

1. Department of Civil Engineering, School of Mechanics and Engineering Science Shanghai University Shanghai China

Abstract

AbstractThe particle breakage effect in sand exerts a significant influence on the design of underground space structure. However, the existing theories seldom consider the breakage effect and often lack accurate descriptions of void ratio changes, leading to substantial errors in the numerical calculations compared to the actual scenario. This study employs the simple critical state sand model (SIMSAND) to account for the particle breakage effect and transforms the drained cylindrical cavity expansion problem into a set of first‐order ordinary differential equations described by the Lagrangian method. The analytical solution of the cylindrical cavity expansion problem is calculated using Matlab programming codes. Firstly, Fontainebleau sand is investigated to analyse the influence of initial stress, void ratio and specific volume around the cavity. The combined effects of initial stress and particle breakage on the soil around the cavities result in dilatancy characteristics and a reduction in void ratio. The stress path analysis reveals that the soil around the cavities only reaches a critical state under high initial stresses. Secondly, a plane strain numerical model is established for twice expansion to verify the calculation outcomes from the cylindrical cavity expansion theory. Finally, an axisymmetric cone penetration test (CPT) model is developed to analyse the theoretical and numerical solutions for expansion stress and sleeve friction. The research results indicate that the CPT in sand need to consider the particle breakage effect, especially under high stress conditions. Without considering particle breakage, the sleeve friction is overestimated. These research findings can offer guidance for geotechnical engineering applications, such as CPT, pressuremeter tests and predictions of bearing capacity for pile foundations in sand.

Publisher

Wiley

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3