Design of novel broad‐spectrum antiviral nucleoside analogues using natural bases ring‐opening strategy

Author:

Du Xingyi12,Yang Xingxing13,Zhao Jianyuan4,Zhang Jinyan13,Yu Jiahui13,Ma Ling4,Zhang Weina25,Cen Shan4,Ren Xuhong1,He Xinhua23ORCID

Affiliation:

1. Key Laboratory of Structure‐Based Drug Design and Discovery Shenyang Pharmaceutical University Shenyang China

2. Nanhu Laboratory National Center of Biomedical Analysis Beijing China

3. State Key Laboratory of Toxicology and Medical Countermeasures Beijing Institute of Pharmacology and Toxicology Beijing China

4. Institute of Medicinal Biotechnology Chinese Academy of Medical Science Beijing China

5. State Key Laboratory of Proteomics, Institute of Basic Medical Sciences National Center of Biomedical Analysis Beijing China

Abstract

AbstractThe global prevalence of RNA virus infections has presented significant challenges to public health in recent years, necessitating the expansion of its alternative therapeutic library. Due to its evolutional conservation, RNA‐dependent RNA polymerase (RdRp) has emerged as a potential target for broad‐spectrum antiviral nucleoside analogues. However, after over half a century of structural modification, exploring unclaimed chemical space using frequently‐used structural substitution methods to design new nucleoside analogues is challenging. In this study, we explore the use of the “ring‐opening” strategy to design new base mimics, thereby using these base mimics to design new nucleoside analogues with broad‐spectrum antiviral activities. A total of 29 compounds were synthesized. Their activity against viral RdRp was initially screened using an influenza A virus RdRp high‐throughput screening model. Then, the antiviral activity of 38a was verified against influenza virus strain A/PR/8/34 (H1N1), demonstrating a 50% inhibitory concentration (IC50) value of 9.95 μM, which was superior to that of ribavirin (the positive control, IC50 = 11.43 μM). Moreover, 38a also has inhibitory activity against coronavirus 229E with an IC50 of 30.82 μM. In addition, compounds 42 and 46f exhibit an 82% inhibition rate against vesicular stomatitis virus at a concentration of 20 μM and hardly induce cytotoxicity in host cells. This work demonstrates the feasibility of designing nucleoside analogues with “ring‐opening” bases and suggests the “ring‐opening” nucleosides may have greater polarity, and designing prodrugs is an important aspect of optimizing their antiviral activity. Future research should focus on enhancing the conformational restriction of open‐loop bases to mimic Watson‐Crick base pairing better and improve antiviral activity.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3